/usr/include/OTB-5.8/otbDBOverlapDataNodeFeatureFunction.txx is in libotb-dev 5.8.0+dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 | /*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef otbDBOverlapDataNodeFeatureFunction_txx
#define otbDBOverlapDataNodeFeatureFunction_txx
#include "otbDBOverlapDataNodeFeatureFunction.h"
namespace otb
{
/**
* Constructor
*/
template <class TCoordRep, class TPrecision>
DBOverlapDataNodeFeatureFunction<TCoordRep, TPrecision>
::DBOverlapDataNodeFeatureFunction()
:m_DistanceThreshold(50)//in physical coordinates
{
}
/**
* Standard "PrintSelf" method
*/
template <class TCoordRep, class TPrecision>
void
DBOverlapDataNodeFeatureFunction<TCoordRep, TPrecision>
::PrintSelf(
std::ostream& os,
itk::Indent indent) const
{
Superclass::PrintSelf( os, indent );
os << indent << "Distance Threshold: " << m_DistanceThreshold << std::endl;
}
/**
* Method to compute the distance of a point to a segment
*/
template <class TCoordRep, class TPrecision>
double
DBOverlapDataNodeFeatureFunction<TCoordRep, TPrecision>
::ComputeEuclideanDistanceMetricToSegment(VertexType q1, VertexType q2, VertexType p) const
{
// Length of the segment
double l2 = q1.SquaredEuclideanDistanceTo(q2);
// Is the projection of p on the segment inside (0<u<1) or
// inside the segment bounds
double u = ((p[0] - q1[0]) *(q2[0] - q1[0] ) +
(p[1] - q1[1]) *(q2[1] - q1[1])) / l2;
if( u < 1e-10 ) u = 0.;
if( u -1. > 1e-10 ) u = 1.;
double x = q1[0] + u *(q2[0] - q1[0] );
double y = q1[1] + u *(q2[1] - q1[1] );
double dx = x - p[0];
double dy = y - p[1];
return vcl_sqrt(dx*dx + dy*dy);
}
template <class TCoordRep, class TPrecision>
typename DBOverlapDataNodeFeatureFunction<TCoordRep, TPrecision>
::OutputType
DBOverlapDataNodeFeatureFunction<TCoordRep, TPrecision>
::Evaluate( const DataNodeType& node ) const
{
OutputType output;
//build the tmp DataTree containing polygon within the radius
typename VectorDataType::Pointer tmpDataTree = VectorDataType::New();
typename DataNodeType::Pointer root = tmpDataTree->GetDataTree()->GetRoot()->Get();
typename DataNodeType::Pointer document = DataNodeType::New();
document->SetNodeType(otb::DOCUMENT);
tmpDataTree->GetDataTree()->Add(document, root);
TreeIteratorType itVector(this->GetInputVectorData()->GetDataTree());
itVector.GoToBegin();
while (!itVector.IsAtEnd())
{
if (itVector.Get()->IsPolygonFeature())
{
typename DataNodeType::Pointer currentGeometry = itVector.Get();
unsigned int i=0;
while (i<currentGeometry->GetPolygonExteriorRing()->GetVertexList()->Size())
{
unsigned int j=0;
while (j<node.GetLine()->GetVertexList()->Size()-1)
{
double dist;
dist = this->ComputeEuclideanDistanceMetricToSegment(node.GetLine()->GetVertexList()->GetElement(j),
node.GetLine()->GetVertexList()->GetElement(j+1),
currentGeometry->GetPolygonExteriorRing()->GetVertexList()->GetElement(i));
//std::cout << "dist: " << dist << std::endl;
//std::cout << "m_DistanceThreshold: " << m_DistanceThreshold << std::endl;
if (dist <= m_DistanceThreshold)
{
//Add the current polygon to the tmp DataTree
//jump to the next one
tmpDataTree->GetDataTree()->Add(currentGeometry, document);
j = node.GetLine()->GetVertexList()->Size();
i = currentGeometry->GetPolygonExteriorRing()->GetVertexList()->Size();
}
++j;
}
++i;
}
}
++itVector;
}
/*
std::cout << this->GetInputVectorData()->GetDataTree()->Count() << std::endl;
std::cout << tmpDataTree->GetDataTree()->Count() << std::endl;
*/
unsigned int crossAcc = 0;
unsigned int nbBuildings = 0;
TreeIteratorType it(tmpDataTree->GetDataTree());
it.GoToBegin();
while (!it.IsAtEnd())
{
if (it.Get()->IsPolygonFeature())
{
typename DataNodeType::Pointer currentGeometry = it.Get();
nbBuildings ++;
for (unsigned int i=0; i<node.GetLine()->GetVertexList()->Size()-1; ++i)
{
if(currentGeometry->GetPolygonExteriorRing()->NbCrossing(node.GetLine()->GetVertexList()->GetElement(i),
node.GetLine()->GetVertexList()->GetElement(i+1)))
{
crossAcc ++;
break;
}
}
}
++it;
}
if(nbBuildings == 0)
{
output.push_back(static_cast<PrecisionType>(0.));
}
else
{
output.push_back(static_cast<PrecisionType>((double)(crossAcc)/(double)(nbBuildings)));
}
output.push_back(static_cast<PrecisionType>(crossAcc));
output.push_back(static_cast<PrecisionType>(nbBuildings));
return output;
}
} // end namespace otb
#endif
|