This file is indexed.

/usr/include/OTB-5.8/otbConfusionMatrixMeasurements.h is in libotb-dev 5.8.0+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.


     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

#ifndef otbConfusionMatrixMeasurements_h
#define otbConfusionMatrixMeasurements_h

#include "itkObject.h"
#include "itkObjectFactory.h"
#include "itkVariableSizeMatrix.h"
#include "itkVariableLengthVector.h"

namespace otb
{
/** \class ConfusionMatrixMeasurements
 *  This class computes measurements on the input confusion matrix.
 *
 *  For a 2 classes problem, the confusion matrix is organized as follows:
 *  \f[ \left( \begin{array}{cc} True Positives & False Negatives \\ False Positives & True Negatives \end{array} \right) \f]
 *
 *  Please note that when accessing the confusion matrix values, the first index is the row index (reference samples),
 *  and the second is the column index (produced samples).
 *
 *  Some measurements are computed by this class:
 *  If we consider true positive (TP), true negative (TN), false positive (FP) and false negative (FP) rates, then in the 2 classes case:
 *  \f[ precision = \frac{TP}{\left( TP + FP \right) }  \f]
 *  \f[ recall = \frac{TP}{\left( TP + FN \right) }  \f]
 *  \f[ FScore = \frac{2 * precision * recall}{\left( precision + recall \right) }  \f]
 *
 *  Moreover overall accuracy and \f[ \kappa \f] index are computed.
 *
 *
 * \ingroup OTBSupervised
 */
template <class TConfusionMatrix = itk::VariableSizeMatrix<unsigned long>, class TLabel = int >
class ITK_EXPORT ConfusionMatrixMeasurements :
  public itk::Object
{
public:
  /** Standard class typedefs */
  typedef ConfusionMatrixMeasurements               Self;
  typedef itk::Object                               Superclass;
  typedef itk::SmartPointer<Self>                   Pointer;
  typedef itk::SmartPointer<const Self>             ConstPointer;

  /** Run-time type information (and related methods). */
  itkTypeMacro(ConfusionMatrixMeasurements, itk::Object);

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  typedef TLabel                                    ClassLabelType;
  typedef std::map<ClassLabelType, int>             MapOfClassesType;
  typedef std::map<int, ClassLabelType>             MapOfIndicesType;

  /** Type for the confusion matrix */
  typedef TConfusionMatrix                          ConfusionMatrixType;

  /** Type for the measurement */
  typedef itk::VariableLengthVector<double>         MeasurementType;


  /** Computes the measurements over m_ConfusionMatrix. */
  void Compute(void);

  /** Accessors */
  itkSetMacro(ConfusionMatrix, ConfusionMatrixType);

  itkGetMacro(TruePositiveValues, MeasurementType);
  itkGetMacro(TrueNegativeValues, MeasurementType);
  itkGetMacro(FalsePositiveValues, MeasurementType);
  itkGetMacro(FalseNegativeValues, MeasurementType);
  itkGetMacro(TruePositiveValue, double);
  itkGetMacro(TrueNegativeValue, double);
  itkGetMacro(FalsePositiveValue, double);
  itkGetMacro(FalseNegativeValue, double);
  itkGetMacro(KappaIndex, double);
  itkGetMacro(OverallAccuracy, double);
  itkGetMacro(Precisions, MeasurementType);
  itkGetMacro(Recalls, MeasurementType);
  itkGetMacro(FScores, MeasurementType);
  itkGetMacro(Precision, double);
  itkGetMacro(Recall, double);
  itkGetMacro(FScore, double);
  itkGetMacro(NumberOfClasses, unsigned short);
  itkGetMacro(NumberOfSamples, unsigned long);

  /* Gives the correspondence between a class label
   * and its index in the confusion matrix
   */
  virtual void SetMapOfClasses(const MapOfClassesType _arg)
  {
    m_MapOfClasses = _arg;
    typename MapOfClassesType::iterator itMapOfClasses;
    m_MapOfIndices.clear();
    for (itMapOfClasses = m_MapOfClasses.begin(); itMapOfClasses != m_MapOfClasses.end(); ++itMapOfClasses)
      {
      m_MapOfIndices[itMapOfClasses->second] = itMapOfClasses->first;
      }
  }

  MapOfClassesType GetMapOfClasses() const
  {
    return m_MapOfClasses;
  }


  /* Gives the correspondence between an index in the
   * confusion matrix and the class label
   */
  virtual void SetMapOfIndices(const MapOfIndicesType _arg)
  {
    m_MapOfIndices = _arg;
    typename MapOfIndicesType::iterator itMapOfIndices;
    m_MapOfClasses.clear();
    for (itMapOfIndices = m_MapOfIndices.begin(); itMapOfIndices != m_MapOfIndices.end(); ++itMapOfIndices)
      {
      m_MapOfClasses[itMapOfIndices->second] = itMapOfIndices->first;
      }
  }

  MapOfIndicesType GetMapOfIndices() const
  {
    return m_MapOfIndices;
  }

protected:
  ConfusionMatrixMeasurements();
  ~ConfusionMatrixMeasurements() ITK_OVERRIDE {}
  //void PrintSelf(std::ostream& os, itk::Indent indent) const;


private:
  ConfusionMatrixMeasurements(const Self &); //purposely not implemented
  void operator =(const Self&); //purposely not implemented

  double m_KappaIndex;
  double m_OverallAccuracy;

  MeasurementType m_FalseNegativeValues;
  MeasurementType m_TrueNegativeValues;
  MeasurementType m_FalsePositiveValues;
  MeasurementType m_TruePositiveValues;

  MeasurementType m_Precisions;
  MeasurementType m_Recalls;
  MeasurementType m_FScores;

  double m_FalseNegativeValue;
  double m_TrueNegativeValue;
  double m_FalsePositiveValue;
  double m_TruePositiveValue;

  double m_Precision;
  double m_Recall;
  double m_FScore;

  MapOfClassesType m_MapOfClasses;
  MapOfIndicesType m_MapOfIndices;

  unsigned short m_NumberOfClasses;
  unsigned long  m_NumberOfSamples;

  ConfusionMatrixType m_ConfusionMatrix;

};
} // end of namespace otb

#ifndef OTB_MANUAL_INSTANTIATION
#include "otbConfusionMatrixMeasurements.txx"
#endif

#endif