This file is indexed.

/usr/include/OTB-5.8/otbBoostMachineLearningModel.h is in libotb-dev 5.8.0+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.


     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef otbBoostMachineLearningModel_h
#define otbBoostMachineLearningModel_h

#include "otbRequiresOpenCVCheck.h"

#include "itkLightObject.h"
#include "itkFixedArray.h"
#include "otbMachineLearningModel.h"


class CvBoost;

namespace otb
{
template <class TInputValue, class TTargetValue>
class ITK_EXPORT BoostMachineLearningModel
  : public MachineLearningModel <TInputValue, TTargetValue>
{
public:
  /** Standard class typedefs. */
  typedef BoostMachineLearningModel           Self;
  typedef MachineLearningModel<TInputValue, TTargetValue> Superclass;
  typedef itk::SmartPointer<Self>                         Pointer;
  typedef itk::SmartPointer<const Self>                   ConstPointer;

  typedef typename Superclass::InputValueType             InputValueType;
  typedef typename Superclass::InputSampleType            InputSampleType;
  typedef typename Superclass::InputListSampleType        InputListSampleType;
  typedef typename Superclass::TargetValueType            TargetValueType;
  typedef typename Superclass::TargetSampleType           TargetSampleType;
  typedef typename Superclass::TargetListSampleType       TargetListSampleType;
  typedef typename Superclass::ConfidenceValueType        ConfidenceValueType;

  /** Run-time type information (and related methods). */
  itkNewMacro(Self);
  itkTypeMacro(BoostMachineLearningModel, MachineLearningModel);

  /** Setters/Getters to the Boost type
   *  It can be CvBoost::DISCRETE, CvBoost::REAL, CvBoost::LOGIT, CvBoost::GENTLE
   *  Default is CvBoost::REAL.
   *  \see http://docs.opencv.org/modules/ml/doc/boosting.html#cvboostparams-cvboostparams
   */
  itkGetMacro(BoostType, int);
  itkSetMacro(BoostType, int);

  /** Setters/Getters to the split criteria
   *  It can be CvBoost::DEFAULT, CvBoost::GINI, CvBoost::MISCLASS, CvBoost::SQERR
   *  Default is CvBoost::DEFAULT. It uses default value according to \c BoostType
   *  \see http://docs.opencv.org/modules/ml/doc/boosting.html#cvboost-predict
   */
  itkGetMacro(SplitCrit, int);
  itkSetMacro(SplitCrit, int);

  /** Setters/Getters to the number of weak classifiers.
   *  Default is 100.
   *  \see http://docs.opencv.org/modules/ml/doc/boosting.html#cvboostparams-cvboostparams
   */
  itkGetMacro(WeakCount, int);
  itkSetMacro(WeakCount, int);

  /** Setters/Getters to the threshold WeightTrimRate.
   *  A threshold between 0 and 1 used to save computational time.
   *  Samples with summary weight \f$ w \leq 1 - WeightTrimRate \f$ do not participate in the next iteration of training.
   *  Set this parameter to 0 to turn off this functionality.
   *  Default is 0.95
   *  \see http://docs.opencv.org/modules/ml/doc/boosting.html#cvboostparams-cvboostparams
   */
  itkGetMacro(WeightTrimRate, double);
  itkSetMacro(WeightTrimRate, double);

  /** Setters/Getters to the maximum depth of the tree.
   * Default is 1
   * \see http://docs.opencv.org/modules/ml/doc/decision_trees.html#CvDTreeParams::CvDTreeParams%28%29
   */
  itkGetMacro(MaxDepth, int);
  itkSetMacro(MaxDepth, int);

  /** Train the machine learning model */
  void Train() ITK_OVERRIDE;

  /** Save the model to file */
  void Save(const std::string & filename, const std::string & name="") ITK_OVERRIDE;

  /** Load the model from file */
  void Load(const std::string & filename, const std::string & name="") ITK_OVERRIDE;

  /**\name Classification model file compatibility tests */
  //@{
  /** Is the input model file readable and compatible with the corresponding classifier ? */
  bool CanReadFile(const std::string &) ITK_OVERRIDE;

  /** Is the input model file writable and compatible with the corresponding classifier ? */
  bool CanWriteFile(const std::string &) ITK_OVERRIDE;
  //@}

protected:
  /** Constructor */
  BoostMachineLearningModel();

  /** Destructor */
  ~BoostMachineLearningModel() ITK_OVERRIDE;

  /** Predict values using the model */
  TargetSampleType DoPredict(const InputSampleType& input, ConfidenceValueType *quality=ITK_NULLPTR) const ITK_OVERRIDE;

  
  /** PrintSelf method */
  void PrintSelf(std::ostream& os, itk::Indent indent) const ITK_OVERRIDE;

private:
  BoostMachineLearningModel(const Self &); //purposely not implemented
  void operator =(const Self&); //purposely not implemented

  CvBoost * m_BoostModel;
  int m_BoostType;
  int m_WeakCount;
  double m_WeightTrimRate;
  int m_SplitCrit;
  int m_MaxDepth;
};
} // end namespace otb

#ifndef OTB_MANUAL_INSTANTIATION
#include "otbBoostMachineLearningModel.txx"
#endif

#endif