/usr/include/OTB-5.8/otbBSplineInterpolateImageFunction.txx is in libotb-dev 5.8.0+dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 | /*=========================================================================
Program: ORFEO Toolbox
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
See OTBCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef otbBSplineInterpolateImageFunction_txx
#define otbBSplineInterpolateImageFunction_txx
#include "otbBSplineInterpolateImageFunction.h"
#include "itkImageLinearIteratorWithIndex.h"
#include "itkImageRegionConstIteratorWithIndex.h"
#include "itkImageRegionIterator.h"
#include "itkVector.h"
#include "itkMatrix.h"
namespace otb
{
/**
* Constructor
*/
template <class TImageType, class TCoordRep, class TCoefficientType>
BSplineInterpolateImageFunction<TImageType, TCoordRep, TCoefficientType>
::BSplineInterpolateImageFunction()
{
m_SplineOrder = 0;
unsigned int SplineOrder = 3;
m_CoefficientFilter = CoefficientFilter::New();
// ***TODO: Should we store coefficients in a variable or retrieve from filter?
m_Coefficients = CoefficientImageType::New();
this->SetSplineOrder(SplineOrder);
}
/**
* Standard "PrintSelf" method
*/
template <class TImageType, class TCoordRep, class TCoefficientType>
void
BSplineInterpolateImageFunction<TImageType, TCoordRep, TCoefficientType>
::PrintSelf(
std::ostream& os,
itk::Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "Spline Order: " << m_SplineOrder << std::endl;
}
template <class TImageType, class TCoordRep, class TCoefficientType>
void
BSplineInterpolateImageFunction<TImageType, TCoordRep, TCoefficientType>
::UpdateCoefficientsFilter(void)
{
m_CoefficientFilter->GetOutput()->UpdateOutputInformation();
m_CoefficientFilter->GetOutput()->SetRequestedRegion(m_CoefficientFilter->GetInput()->GetBufferedRegion());
m_CoefficientFilter->GetOutput()->PropagateRequestedRegion();
m_CoefficientFilter->GetOutput()->UpdateOutputData();
m_Coefficients = m_CoefficientFilter->GetOutput();
m_CurrentBufferedRegion = m_CoefficientFilter->GetInput()->GetBufferedRegion();
}
template <class TImageType, class TCoordRep, class TCoefficientType>
void
BSplineInterpolateImageFunction<TImageType, TCoordRep, TCoefficientType>
::SetInputImage(const TImageType * inputData)
{
if (inputData)
{
m_CoefficientFilter->SetInput(inputData);
// the Coefficient Filter requires that the spline order and the input data be set.
// TODO: We need to ensure that this is only run once and only after both input and
// spline order have been set. Should we force an update after the
// splineOrder has been set also?
UpdateCoefficientsFilter();
// Call the Superclass implementation after, in case the filter
// pulls in more of the input image
Superclass::SetInputImage(inputData);
m_DataLength = inputData->GetBufferedRegion().GetSize();
}
else
{
m_Coefficients = ITK_NULLPTR;
}
}
template <class TImageType, class TCoordRep, class TCoefficientType>
void
BSplineInterpolateImageFunction<TImageType, TCoordRep, TCoefficientType>
::SetSplineOrder(unsigned int SplineOrder)
{
if (SplineOrder == m_SplineOrder)
{
return;
}
m_SplineOrder = SplineOrder;
m_CoefficientFilter->SetSplineOrder(SplineOrder);
//this->SetPoles();
m_MaxNumberInterpolationPoints = 1;
for (unsigned int n = 0; n < ImageDimension; ++n)
{
m_MaxNumberInterpolationPoints *= (m_SplineOrder + 1);
}
this->GeneratePointsToIndex();
}
template <class TImageType, class TCoordRep, class TCoefficientType>
typename
BSplineInterpolateImageFunction<TImageType, TCoordRep, TCoefficientType>
::OutputType
BSplineInterpolateImageFunction<TImageType, TCoordRep, TCoefficientType>
::EvaluateAtContinuousIndex(const ContinuousIndexType& x) const
{
//UpdateCoefficientsFilter();
vnl_matrix<long> EvaluateIndex(ImageDimension, (m_SplineOrder + 1));
// compute the interpolation indexes
this->DetermineRegionOfSupport(EvaluateIndex, x, m_SplineOrder);
// Determine weights
vnl_matrix<double> weights(ImageDimension, (m_SplineOrder + 1));
SetInterpolationWeights(x, EvaluateIndex, weights, m_SplineOrder);
//std::cout<<"EvaluateIndex: "<<std::endl;
//std::cout<<EvaluateIndex[0][0]<<"\t"<<EvaluateIndex[0][1]<<"\t"
// <<EvaluateIndex[0][2]<<"\t"<<EvaluateIndex[0][3]<<std::endl;
//std::cout<<EvaluateIndex[1][0]<<"\t"<<EvaluateIndex[1][1]<<"\t"
// <<EvaluateIndex[1][2]<<"\t"<<EvaluateIndex[1][3]<<std::endl;
// Modify EvaluateIndex at the boundaries using mirror boundary conditions
this->ApplyMirrorBoundaryConditions(EvaluateIndex, m_SplineOrder);
// perform interpolation
double interpolated = 0.0;
IndexType coefficientIndex;
// Step through eachpoint in the N-dimensional interpolation cube.
for (unsigned int p = 0; p < m_MaxNumberInterpolationPoints; ++p)
{
// translate each step into the N-dimensional index.
// IndexType pointIndex = PointToIndex( p );
double w = 1.0;
for (unsigned int n = 0; n < ImageDimension; ++n)
{
w *= weights[n][m_PointsToIndex[p][n]];
coefficientIndex[n] = EvaluateIndex[n][m_PointsToIndex[p][n]]; // Build up ND index for coefficients.
//std::cout<<"From inside: "<<n<<" "<<p<<" "<<m_PointsToIndex[p][n]<<" "<< EvaluateIndex[n][m_PointsToIndex[p][n]]<<std::endl;
}
//std::cout<<"CoefficientIndex: "<<coefficientIndex<<std::endl;
// Convert our step p to the appropriate point in ND space in the
// m_Coefficients cube.
interpolated += w * m_Coefficients->GetPixel(coefficientIndex);
}
/* double interpolated = 0.0;
IndexType coefficientIndex;
// Step through eachpoint in the N-dimensional interpolation cube.
for (unsigned int sp = 0; sp <= m_SplineOrder; ++sp)
{
for (unsigned int sp1=0; sp1 <= m_SplineOrder; sp1++)
{
double w = 1.0;
for (unsigned int n1 = 0; n1 < ImageDimension; n1++ )
{
w *= weights[n1][ sp1 ];
coefficientIndex[n1] = EvaluateIndex[n1][sp]; // Build up ND index for coefficients.
}
interpolated += w * m_Coefficients->GetPixel(coefficientIndex);
}
}
*/
return (interpolated);
}
template <class TImageType, class TCoordRep, class TCoefficientType>
typename
BSplineInterpolateImageFunction<TImageType, TCoordRep, TCoefficientType>
::CovariantVectorType
BSplineInterpolateImageFunction<TImageType, TCoordRep, TCoefficientType>
::EvaluateDerivativeAtContinuousIndex(const ContinuousIndexType& x) const
{
UpdateCoefficientsFilter();
vnl_matrix<long> EvaluateIndex(ImageDimension, (m_SplineOrder + 1));
// compute the interpolation indexes
// TODO: Do we need to revisit region of support for the derivatives?
this->DetermineRegionOfSupport(EvaluateIndex, x, m_SplineOrder);
// Determine weights
vnl_matrix<double> weights(ImageDimension, (m_SplineOrder + 1));
SetInterpolationWeights(x, EvaluateIndex, weights, m_SplineOrder);
vnl_matrix<double> weightsDerivative(ImageDimension, (m_SplineOrder + 1));
SetDerivativeWeights(x, EvaluateIndex, weightsDerivative, (m_SplineOrder));
// Modify EvaluateIndex at the boundaries using mirror boundary conditions
this->ApplyMirrorBoundaryConditions(EvaluateIndex, m_SplineOrder);
// Calculate derivative
CovariantVectorType derivativeValue;
double tempValue;
IndexType coefficientIndex;
for (unsigned int n = 0; n < ImageDimension; ++n)
{
derivativeValue[n] = 0.0;
for (unsigned int p = 0; p < m_MaxNumberInterpolationPoints; ++p)
{
tempValue = 1.0;
for (unsigned int n1 = 0; n1 < ImageDimension; n1++)
{
//coefficientIndex[n1] = EvaluateIndex[n1][sp];
coefficientIndex[n1] = EvaluateIndex[n1][m_PointsToIndex[p][n1]];
if (n1 == n)
{
//w *= weights[n][ m_PointsToIndex[p][n] ];
tempValue *= weightsDerivative[n1][m_PointsToIndex[p][n1]];
}
else
{
tempValue *= weights[n1][m_PointsToIndex[p][n1]];
}
}
derivativeValue[n] += m_Coefficients->GetPixel(coefficientIndex) * tempValue;
}
derivativeValue[n] /= this->GetInputImage()->GetSpacing()[n]; // take spacing into account
}
return (derivativeValue);
}
template <class TImageType, class TCoordRep, class TCoefficientType>
void
BSplineInterpolateImageFunction<TImageType, TCoordRep, TCoefficientType>
::SetInterpolationWeights(const ContinuousIndexType& x, const vnl_matrix<long>& EvaluateIndex,
vnl_matrix<double>& weights, unsigned int splineOrder) const
{
// For speed improvements we could make each case a separate function and use
// function pointers to reference the correct weight order.
// Left as is for now for readability.
double w, w2, w4, t, t0, t1;
switch (splineOrder)
{
case 3:
for (unsigned int n = 0; n < ImageDimension; ++n)
{
w = x[n] - (double) EvaluateIndex[n][1];
weights[n][3] = (1.0 / 6.0) * w * w * w;
weights[n][0] = (1.0 / 6.0) + 0.5 * w * (w - 1.0) - weights[n][3];
weights[n][2] = w + weights[n][0] - 2.0 * weights[n][3];
weights[n][1] = 1.0 - weights[n][0] - weights[n][2] - weights[n][3];
}
break;
case 0:
for (unsigned int n = 0; n < ImageDimension; ++n)
{
weights[n][0] = 1; // implements nearest neighbor
}
break;
case 1:
for (unsigned int n = 0; n < ImageDimension; ++n)
{
w = x[n] - (double) EvaluateIndex[n][0];
weights[n][1] = w;
weights[n][0] = 1.0 - w;
}
break;
case 2:
for (unsigned int n = 0; n < ImageDimension; ++n)
{
/* x */
w = x[n] - (double) EvaluateIndex[n][1];
weights[n][1] = 0.75 - w * w;
weights[n][2] = 0.5 * (w - weights[n][1] + 1.0);
weights[n][0] = 1.0 - weights[n][1] - weights[n][2];
}
break;
case 4:
for (unsigned int n = 0; n < ImageDimension; ++n)
{
/* x */
w = x[n] - (double) EvaluateIndex[n][2];
w2 = w * w;
t = (1.0 / 6.0) * w2;
weights[n][0] = 0.5 - w;
weights[n][0] *= weights[n][0];
weights[n][0] *= (1.0 / 24.0) * weights[n][0];
t0 = w * (t - 11.0 / 24.0);
t1 = 19.0 / 96.0 + w2 * (0.25 - t);
weights[n][1] = t1 + t0;
weights[n][3] = t1 - t0;
weights[n][4] = weights[n][0] + t0 + 0.5 * w;
weights[n][2] = 1.0 - weights[n][0] - weights[n][1] - weights[n][3] - weights[n][4];
}
break;
case 5:
for (unsigned int n = 0; n < ImageDimension; ++n)
{
/* x */
w = x[n] - (double) EvaluateIndex[n][2];
w2 = w * w;
weights[n][5] = (1.0 / 120.0) * w * w2 * w2;
w2 -= w;
w4 = w2 * w2;
w -= 0.5;
t = w2 * (w2 - 3.0);
weights[n][0] = (1.0 / 24.0) * (1.0 / 5.0 + w2 + w4) - weights[n][5];
t0 = (1.0 / 24.0) * (w2 * (w2 - 5.0) + 46.0 / 5.0);
t1 = (-1.0 / 12.0) * w * (t + 4.0);
weights[n][2] = t0 + t1;
weights[n][3] = t0 - t1;
t0 = (1.0 / 16.0) * (9.0 / 5.0 - t);
t1 = (1.0 / 24.0) * w * (w4 - w2 - 5.0);
weights[n][1] = t0 + t1;
weights[n][4] = t0 - t1;
}
break;
default:
// SplineOrder not implemented yet.
itk::ExceptionObject err(__FILE__, __LINE__);
err.SetLocation(ITK_LOCATION);
err.SetDescription("SplineOrder must be between 0 and 5. Requested spline order has not been implemented yet.");
throw err;
break;
}
}
template <class TImageType, class TCoordRep, class TCoefficientType>
void
BSplineInterpolateImageFunction<TImageType, TCoordRep, TCoefficientType>
::SetDerivativeWeights(const ContinuousIndexType& x, const vnl_matrix<long>& EvaluateIndex,
vnl_matrix<double>& weights, unsigned int splineOrder) const
{
// For speed improvements we could make each case a separate function and use
// function pointers to reference the correct weight order.
// Another possibility would be to loop inside the case statement (reducing the number
// of switch statement executions to one per routine call.
// Left as is for now for readability.
double w, w1, w2, w3, w4, w5, t, t0, t1, t2;
int derivativeSplineOrder = (int) splineOrder - 1;
switch (derivativeSplineOrder)
{
// Calculates B(splineOrder) ( (x + 1/2) - xi) - B(splineOrder -1) ( (x - 1/2) - xi)
case -1:
// Why would we want to do this?
for (unsigned int n = 0; n < ImageDimension; ++n)
{
weights[n][0] = 0.0;
}
break;
case 0:
for (unsigned int n = 0; n < ImageDimension; ++n)
{
weights[n][0] = -1.0;
weights[n][1] = 1.0;
}
break;
case 1:
for (unsigned int n = 0; n < ImageDimension; ++n)
{
w = x[n] + 0.5 - (double) EvaluateIndex[n][1];
// w2 = w;
w1 = 1.0 - w;
weights[n][0] = 0.0 - w1;
weights[n][1] = w1 - w;
weights[n][2] = w;
}
break;
case 2:
for (unsigned int n = 0; n < ImageDimension; ++n)
{
w = x[n] + .5 - (double) EvaluateIndex[n][2];
w2 = 0.75 - w * w;
w3 = 0.5 * (w - w2 + 1.0);
w1 = 1.0 - w2 - w3;
weights[n][0] = 0.0 - w1;
weights[n][1] = w1 - w2;
weights[n][2] = w2 - w3;
weights[n][3] = w3;
}
break;
case 3:
for (unsigned int n = 0; n < ImageDimension; ++n)
{
w = x[n] + 0.5 - (double) EvaluateIndex[n][2];
w4 = (1.0 / 6.0) * w * w * w;
w1 = (1.0 / 6.0) + 0.5 * w * (w - 1.0) - w4;
w3 = w + w1 - 2.0 * w4;
w2 = 1.0 - w1 - w3 - w4;
weights[n][0] = 0.0 - w1;
weights[n][1] = w1 - w2;
weights[n][2] = w2 - w3;
weights[n][3] = w3 - w4;
weights[n][4] = w4;
}
break;
case 4:
for (unsigned int n = 0; n < ImageDimension; ++n)
{
w = x[n] + .5 - (double) EvaluateIndex[n][3];
t2 = w * w;
t = (1.0 / 6.0) * t2;
w1 = 0.5 - w;
w1 *= w1;
w1 *= (1.0 / 24.0) * w1;
t0 = w * (t - 11.0 / 24.0);
t1 = 19.0 / 96.0 + t2 * (0.25 - t);
w2 = t1 + t0;
w4 = t1 - t0;
w5 = w1 + t0 + 0.5 * w;
w3 = 1.0 - w1 - w2 - w4 - w5;
weights[n][0] = 0.0 - w1;
weights[n][1] = w1 - w2;
weights[n][2] = w2 - w3;
weights[n][3] = w3 - w4;
weights[n][4] = w4 - w5;
weights[n][5] = w5;
}
break;
default:
// SplineOrder not implemented yet.
itk::ExceptionObject err(__FILE__, __LINE__);
err.SetLocation(ITK_LOCATION);
err.SetDescription(
"SplineOrder (for derivatives) must be between 1 and 5. Requested spline order has not been implemented yet.");
throw err;
break;
}
}
// Generates m_PointsToIndex;
template <class TImageType, class TCoordRep, class TCoefficientType>
void
BSplineInterpolateImageFunction<TImageType, TCoordRep, TCoefficientType>
::GeneratePointsToIndex()
{
// m_PointsToIndex is used to convert a sequential location to an N-dimension
// index vector. This is precomputed to save time during the interpolation routine.
m_PointsToIndex.resize(m_MaxNumberInterpolationPoints);
for (unsigned int p = 0; p < m_MaxNumberInterpolationPoints; ++p)
{
int pp = p;
unsigned long indexFactor[ImageDimension];
indexFactor[0] = 1;
for (int j = 1; j < static_cast<int>(ImageDimension); ++j)
{
indexFactor[j] = indexFactor[j - 1] * (m_SplineOrder + 1);
}
for (int j = (static_cast<int>(ImageDimension) - 1); j >= 0; j--)
{
m_PointsToIndex[p][j] = pp / indexFactor[j];
pp = pp % indexFactor[j];
}
}
}
template <class TImageType, class TCoordRep, class TCoefficientType>
void
BSplineInterpolateImageFunction<TImageType, TCoordRep, TCoefficientType>
::DetermineRegionOfSupport(vnl_matrix<long>& evaluateIndex,
const ContinuousIndexType& x,
unsigned int splineOrder) const
{
long indx;
// compute the interpolation indexes
for (unsigned int n = 0; n < ImageDimension; ++n)
{
if (splineOrder & 1) // Use this index calculation for odd splineOrder
{
indx = (long) vcl_floor((float) x[n]) - splineOrder / 2;
//std::cout<<"x: "<<x<<std::endl;
//std::cout<<"splineOrder: "<<splineOrder<<std::endl;
//std::cout<<"indx: "<<indx<<std::endl;
for (unsigned int k = 0; k <= splineOrder; ++k)
{
evaluateIndex[n][k] = indx++;
}
}
else // Use this index calculation for even splineOrder
{
indx = (long) vcl_floor((float) (x[n] + 0.5)) - splineOrder / 2;
//std::cout<<"x: "<<x<<std::endl;
//std::cout<<"splineOrder: "<<splineOrder<<std::endl;
//std::cout<<"indx: "<<indx<<std::endl;
for (unsigned int k = 0; k <= splineOrder; ++k)
{
evaluateIndex[n][k] = indx++;
}
}
}
}
template <class TImageType, class TCoordRep, class TCoefficientType>
void
BSplineInterpolateImageFunction<TImageType, TCoordRep, TCoefficientType>
::ApplyMirrorBoundaryConditions(vnl_matrix<long>& evaluateIndex,
unsigned int splineOrder) const
{
for (unsigned int n = 0; n < ImageDimension; ++n)
{
long dataLength = m_DataLength[n];
long dataOffset = m_CurrentBufferedRegion.GetIndex()[n];
// apply the mirror boundary conditions
// TODO: We could implement other boundary options beside mirror
if (m_DataLength[n] == 1)
{
for (unsigned int k = 0; k <= splineOrder; ++k)
{
evaluateIndex[n][k] = 0;
}
}
else
{
for (unsigned int k = 0; k <= splineOrder; ++k)
{
// btw - Think about this couldn't this be replaced with a more elagent modulus method?
evaluateIndex[n][k] =
(evaluateIndex[n][k] < dataOffset) ? (dataOffset + (dataOffset - evaluateIndex[n][k]) % dataLength)
: (evaluateIndex[n][k]);
if ((long) dataLength + dataOffset <= evaluateIndex[n][k])
{
evaluateIndex[n][k] = dataOffset + dataLength - (evaluateIndex[n][k] - dataOffset - dataLength) % dataLength;
}
}
}
}
}
} // namespace otb
#endif
|