This file is indexed.

/usr/include/OTB-5.8/otbBSplineInterpolateImageFunction.txx is in libotb-dev 5.8.0+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
/*=========================================================================

  Program:   ORFEO Toolbox
  Language:  C++
  Date:      $Date$
  Version:   $Revision$


  Copyright (c) Centre National d'Etudes Spatiales. All rights reserved.
  See OTBCopyright.txt for details.


     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef otbBSplineInterpolateImageFunction_txx
#define otbBSplineInterpolateImageFunction_txx
#include "otbBSplineInterpolateImageFunction.h"
#include "itkImageLinearIteratorWithIndex.h"
#include "itkImageRegionConstIteratorWithIndex.h"
#include "itkImageRegionIterator.h"

#include "itkVector.h"

#include "itkMatrix.h"

namespace otb
{

/**
 * Constructor
 */
template <class TImageType, class TCoordRep, class TCoefficientType>
BSplineInterpolateImageFunction<TImageType, TCoordRep, TCoefficientType>
::BSplineInterpolateImageFunction()
{
  m_SplineOrder = 0;
  unsigned int SplineOrder = 3;
  m_CoefficientFilter = CoefficientFilter::New();
  // ***TODO: Should we store coefficients in a variable or retrieve from filter?
  m_Coefficients = CoefficientImageType::New();
  this->SetSplineOrder(SplineOrder);
}

/**
 * Standard "PrintSelf" method
 */
template <class TImageType, class TCoordRep, class TCoefficientType>
void
BSplineInterpolateImageFunction<TImageType, TCoordRep, TCoefficientType>
::PrintSelf(
  std::ostream& os,
  itk::Indent indent) const
{
  Superclass::PrintSelf(os, indent);
  os << indent << "Spline Order: " << m_SplineOrder << std::endl;

}

template <class TImageType, class TCoordRep, class TCoefficientType>
void
BSplineInterpolateImageFunction<TImageType, TCoordRep, TCoefficientType>
::UpdateCoefficientsFilter(void)
{
  m_CoefficientFilter->GetOutput()->UpdateOutputInformation();
  m_CoefficientFilter->GetOutput()->SetRequestedRegion(m_CoefficientFilter->GetInput()->GetBufferedRegion());
  m_CoefficientFilter->GetOutput()->PropagateRequestedRegion();
  m_CoefficientFilter->GetOutput()->UpdateOutputData();
  m_Coefficients = m_CoefficientFilter->GetOutput();
  m_CurrentBufferedRegion = m_CoefficientFilter->GetInput()->GetBufferedRegion();
}
template <class TImageType, class TCoordRep, class TCoefficientType>
void
BSplineInterpolateImageFunction<TImageType, TCoordRep, TCoefficientType>
::SetInputImage(const TImageType * inputData)
{
  if (inputData)
    {
    m_CoefficientFilter->SetInput(inputData);

    // the Coefficient Filter requires that the spline order and the input data be set.
    // TODO:  We need to ensure that this is only run once and only after both input and
    //        spline order have been set. Should we force an update after the
    //        splineOrder has been set also?

    UpdateCoefficientsFilter();

    // Call the Superclass implementation after, in case the filter
    // pulls in  more of the input image
    Superclass::SetInputImage(inputData);

    m_DataLength = inputData->GetBufferedRegion().GetSize();
    }
  else
    {
    m_Coefficients = ITK_NULLPTR;
    }
}

template <class TImageType, class TCoordRep, class TCoefficientType>
void
BSplineInterpolateImageFunction<TImageType, TCoordRep, TCoefficientType>
::SetSplineOrder(unsigned int SplineOrder)
{
  if (SplineOrder == m_SplineOrder)
    {
    return;
    }
  m_SplineOrder = SplineOrder;
  m_CoefficientFilter->SetSplineOrder(SplineOrder);

  //this->SetPoles();
  m_MaxNumberInterpolationPoints = 1;
  for (unsigned int n = 0; n < ImageDimension; ++n)
    {
    m_MaxNumberInterpolationPoints *= (m_SplineOrder + 1);
    }
  this->GeneratePointsToIndex();
}

template <class TImageType, class TCoordRep, class TCoefficientType>
typename
BSplineInterpolateImageFunction<TImageType, TCoordRep, TCoefficientType>
::OutputType
BSplineInterpolateImageFunction<TImageType, TCoordRep, TCoefficientType>
::EvaluateAtContinuousIndex(const ContinuousIndexType& x) const
{
  //UpdateCoefficientsFilter();
  vnl_matrix<long>        EvaluateIndex(ImageDimension, (m_SplineOrder + 1));

  // compute the interpolation indexes
  this->DetermineRegionOfSupport(EvaluateIndex, x, m_SplineOrder);

  // Determine weights
  vnl_matrix<double>        weights(ImageDimension, (m_SplineOrder + 1));
  SetInterpolationWeights(x, EvaluateIndex, weights, m_SplineOrder);

  //std::cout<<"EvaluateIndex: "<<std::endl;
  //std::cout<<EvaluateIndex[0][0]<<"\t"<<EvaluateIndex[0][1]<<"\t"
  //     <<EvaluateIndex[0][2]<<"\t"<<EvaluateIndex[0][3]<<std::endl;
  //std::cout<<EvaluateIndex[1][0]<<"\t"<<EvaluateIndex[1][1]<<"\t"
  //     <<EvaluateIndex[1][2]<<"\t"<<EvaluateIndex[1][3]<<std::endl;

  // Modify EvaluateIndex at the boundaries using mirror boundary conditions
  this->ApplyMirrorBoundaryConditions(EvaluateIndex, m_SplineOrder);

  // perform interpolation
  double    interpolated = 0.0;
  IndexType coefficientIndex;
  // Step through eachpoint in the N-dimensional interpolation cube.
  for (unsigned int p = 0; p < m_MaxNumberInterpolationPoints; ++p)
    {
    // translate each step into the N-dimensional index.
    //      IndexType pointIndex = PointToIndex( p );

    double w = 1.0;
    for (unsigned int n = 0; n < ImageDimension; ++n)
      {
      w *= weights[n][m_PointsToIndex[p][n]];
      coefficientIndex[n] = EvaluateIndex[n][m_PointsToIndex[p][n]];  // Build up ND index for coefficients.
      //std::cout<<"From inside: "<<n<<" "<<p<<" "<<m_PointsToIndex[p][n]<<" "<< EvaluateIndex[n][m_PointsToIndex[p][n]]<<std::endl;
      }
    //std::cout<<"CoefficientIndex: "<<coefficientIndex<<std::endl;
    // Convert our step p to the appropriate point in ND space in the
    // m_Coefficients cube.
    interpolated += w * m_Coefficients->GetPixel(coefficientIndex);
    }

  /*  double interpolated = 0.0;
    IndexType coefficientIndex;
    // Step through eachpoint in the N-dimensional interpolation cube.
    for (unsigned int sp = 0; sp <= m_SplineOrder; ++sp)
      {
      for (unsigned int sp1=0; sp1 <= m_SplineOrder; sp1++)
        {

        double w = 1.0;
        for (unsigned int n1 = 0; n1 < ImageDimension; n1++ )
          {
          w *= weights[n1][ sp1 ];
          coefficientIndex[n1] = EvaluateIndex[n1][sp];  // Build up ND index for coefficients.
          }

          interpolated += w * m_Coefficients->GetPixel(coefficientIndex);
        }
      }
  */
  return (interpolated);

}

template <class TImageType, class TCoordRep, class TCoefficientType>
typename
BSplineInterpolateImageFunction<TImageType, TCoordRep, TCoefficientType>
::CovariantVectorType
BSplineInterpolateImageFunction<TImageType, TCoordRep, TCoefficientType>
::EvaluateDerivativeAtContinuousIndex(const ContinuousIndexType& x) const
{
  UpdateCoefficientsFilter();
  vnl_matrix<long>        EvaluateIndex(ImageDimension, (m_SplineOrder + 1));

  // compute the interpolation indexes
  // TODO: Do we need to revisit region of support for the derivatives?
  this->DetermineRegionOfSupport(EvaluateIndex, x, m_SplineOrder);

  // Determine weights
  vnl_matrix<double>        weights(ImageDimension, (m_SplineOrder + 1));
  SetInterpolationWeights(x, EvaluateIndex, weights, m_SplineOrder);

  vnl_matrix<double>        weightsDerivative(ImageDimension, (m_SplineOrder + 1));
  SetDerivativeWeights(x, EvaluateIndex, weightsDerivative, (m_SplineOrder));

  // Modify EvaluateIndex at the boundaries using mirror boundary conditions
  this->ApplyMirrorBoundaryConditions(EvaluateIndex, m_SplineOrder);

  // Calculate derivative
  CovariantVectorType derivativeValue;
  double              tempValue;
  IndexType           coefficientIndex;
  for (unsigned int n = 0; n < ImageDimension; ++n)
    {
    derivativeValue[n] = 0.0;
    for (unsigned int p = 0; p < m_MaxNumberInterpolationPoints; ++p)
      {
      tempValue = 1.0;
      for (unsigned int n1 = 0; n1 < ImageDimension; n1++)
        {
        //coefficientIndex[n1] = EvaluateIndex[n1][sp];
        coefficientIndex[n1] = EvaluateIndex[n1][m_PointsToIndex[p][n1]];

        if (n1 == n)
          {
          //w *= weights[n][ m_PointsToIndex[p][n] ];
          tempValue *= weightsDerivative[n1][m_PointsToIndex[p][n1]];
          }
        else
          {
          tempValue *= weights[n1][m_PointsToIndex[p][n1]];
          }
        }
      derivativeValue[n] += m_Coefficients->GetPixel(coefficientIndex) * tempValue;
      }
    derivativeValue[n] /= this->GetInputImage()->GetSpacing()[n];   // take spacing into account
    }

  return (derivativeValue);

}

template <class TImageType, class TCoordRep, class TCoefficientType>
void
BSplineInterpolateImageFunction<TImageType, TCoordRep, TCoefficientType>
::SetInterpolationWeights(const ContinuousIndexType& x, const vnl_matrix<long>& EvaluateIndex,
                          vnl_matrix<double>& weights, unsigned int splineOrder) const
{
  // For speed improvements we could make each case a separate function and use
  // function pointers to reference the correct weight order.
  // Left as is for now for readability.
  double w, w2, w4, t, t0, t1;

  switch (splineOrder)
    {
    case 3:
      for (unsigned int n = 0; n < ImageDimension; ++n)
        {
        w = x[n] - (double) EvaluateIndex[n][1];
        weights[n][3] = (1.0 / 6.0) * w * w * w;
        weights[n][0] = (1.0 / 6.0) + 0.5 * w * (w - 1.0) - weights[n][3];
        weights[n][2] = w + weights[n][0] - 2.0 * weights[n][3];
        weights[n][1] = 1.0 - weights[n][0] - weights[n][2] - weights[n][3];
        }
      break;
    case 0:
      for (unsigned int n = 0; n < ImageDimension; ++n)
        {
        weights[n][0] = 1; // implements nearest neighbor
        }
      break;
    case 1:
      for (unsigned int n = 0; n < ImageDimension; ++n)
        {
        w = x[n] - (double) EvaluateIndex[n][0];
        weights[n][1] = w;
        weights[n][0] = 1.0 - w;
        }
      break;
    case 2:
      for (unsigned int n = 0; n < ImageDimension; ++n)
        {
        /* x */
        w = x[n] - (double) EvaluateIndex[n][1];
        weights[n][1] = 0.75 - w * w;
        weights[n][2] = 0.5 * (w - weights[n][1] + 1.0);
        weights[n][0] = 1.0 - weights[n][1] - weights[n][2];
        }
      break;
    case 4:
      for (unsigned int n = 0; n < ImageDimension; ++n)
        {
        /* x */
        w = x[n] - (double) EvaluateIndex[n][2];
        w2 = w * w;
        t = (1.0 / 6.0) * w2;
        weights[n][0] = 0.5 - w;
        weights[n][0] *= weights[n][0];
        weights[n][0] *= (1.0 / 24.0) * weights[n][0];
        t0 = w * (t - 11.0 / 24.0);
        t1 = 19.0 / 96.0 + w2 * (0.25 - t);
        weights[n][1] = t1 + t0;
        weights[n][3] = t1 - t0;
        weights[n][4] = weights[n][0] + t0 + 0.5 * w;
        weights[n][2] = 1.0 - weights[n][0] - weights[n][1] - weights[n][3] - weights[n][4];
        }
      break;
    case 5:
      for (unsigned int n = 0; n < ImageDimension; ++n)
        {
        /* x */
        w = x[n] - (double) EvaluateIndex[n][2];
        w2 = w * w;
        weights[n][5] = (1.0 / 120.0) * w * w2 * w2;
        w2 -= w;
        w4 = w2 * w2;
        w -= 0.5;
        t = w2 * (w2 - 3.0);
        weights[n][0] = (1.0 / 24.0) * (1.0 / 5.0 + w2 + w4) - weights[n][5];
        t0 = (1.0 / 24.0) * (w2 * (w2 - 5.0) + 46.0 / 5.0);
        t1 = (-1.0 / 12.0) * w * (t + 4.0);
        weights[n][2] = t0 + t1;
        weights[n][3] = t0 - t1;
        t0 = (1.0 / 16.0) * (9.0 / 5.0 - t);
        t1 = (1.0 / 24.0) * w * (w4 - w2 - 5.0);
        weights[n][1] = t0 + t1;
        weights[n][4] = t0 - t1;
        }
      break;
    default:
      // SplineOrder not implemented yet.
      itk::ExceptionObject err(__FILE__, __LINE__);
      err.SetLocation(ITK_LOCATION);
      err.SetDescription("SplineOrder must be between 0 and 5. Requested spline order has not been implemented yet.");
      throw err;
      break;
    }

}

template <class TImageType, class TCoordRep, class TCoefficientType>
void
BSplineInterpolateImageFunction<TImageType, TCoordRep, TCoefficientType>
::SetDerivativeWeights(const ContinuousIndexType& x, const vnl_matrix<long>& EvaluateIndex,
                       vnl_matrix<double>& weights, unsigned int splineOrder) const
{
  // For speed improvements we could make each case a separate function and use
  // function pointers to reference the correct weight order.
  // Another possibility would be to loop inside the case statement (reducing the number
  // of switch statement executions to one per routine call.
  // Left as is for now for readability.
  double w, w1, w2, w3, w4, w5, t, t0, t1, t2;
  int    derivativeSplineOrder = (int) splineOrder - 1;

  switch (derivativeSplineOrder)
    {

    // Calculates B(splineOrder) ( (x + 1/2) - xi) - B(splineOrder -1) ( (x - 1/2) - xi)
    case -1:
      // Why would we want to do this?
      for (unsigned int n = 0; n < ImageDimension; ++n)
        {
        weights[n][0] = 0.0;
        }
      break;
    case 0:
      for (unsigned int n = 0; n < ImageDimension; ++n)
        {
        weights[n][0] = -1.0;
        weights[n][1] =  1.0;
        }
      break;
    case 1:
      for (unsigned int n = 0; n < ImageDimension; ++n)
        {
        w = x[n] + 0.5 - (double) EvaluateIndex[n][1];
        // w2 = w;
        w1 = 1.0 - w;

        weights[n][0] = 0.0 - w1;
        weights[n][1] = w1 - w;
        weights[n][2] = w;
        }
      break;
    case 2:

      for (unsigned int n = 0; n < ImageDimension; ++n)
        {
        w = x[n] + .5 - (double) EvaluateIndex[n][2];
        w2 = 0.75 - w * w;
        w3 = 0.5 * (w - w2 + 1.0);
        w1 = 1.0 - w2 - w3;

        weights[n][0] = 0.0 - w1;
        weights[n][1] = w1 - w2;
        weights[n][2] = w2 - w3;
        weights[n][3] = w3;
        }
      break;
    case 3:

      for (unsigned int n = 0; n < ImageDimension; ++n)
        {
        w = x[n] + 0.5 - (double) EvaluateIndex[n][2];
        w4 = (1.0 / 6.0) * w * w * w;
        w1 = (1.0 / 6.0) + 0.5 * w * (w - 1.0) - w4;
        w3 = w + w1 - 2.0 * w4;
        w2 = 1.0 - w1 - w3 - w4;

        weights[n][0] = 0.0 - w1;
        weights[n][1] = w1 - w2;
        weights[n][2] = w2 - w3;
        weights[n][3] = w3 - w4;
        weights[n][4] = w4;
        }
      break;
    case 4:
      for (unsigned int n = 0; n < ImageDimension; ++n)
        {
        w = x[n] + .5 - (double) EvaluateIndex[n][3];
        t2 = w * w;
        t = (1.0 / 6.0) * t2;
        w1 = 0.5 - w;
        w1 *= w1;
        w1 *= (1.0 / 24.0) * w1;
        t0 = w * (t - 11.0 / 24.0);
        t1 = 19.0 / 96.0 + t2 * (0.25 - t);
        w2 = t1 + t0;
        w4 = t1 - t0;
        w5 = w1 + t0 + 0.5 * w;
        w3 = 1.0 - w1 - w2 - w4 - w5;

        weights[n][0] = 0.0 - w1;
        weights[n][1] = w1 - w2;
        weights[n][2] = w2 - w3;
        weights[n][3] = w3 - w4;
        weights[n][4] = w4 - w5;
        weights[n][5] = w5;
        }
      break;

    default:
      // SplineOrder not implemented yet.
      itk::ExceptionObject err(__FILE__, __LINE__);
      err.SetLocation(ITK_LOCATION);
      err.SetDescription(
        "SplineOrder (for derivatives) must be between 1 and 5. Requested spline order has not been implemented yet.");
      throw err;
      break;
    }

}

// Generates m_PointsToIndex;
template <class TImageType, class TCoordRep, class TCoefficientType>
void
BSplineInterpolateImageFunction<TImageType, TCoordRep, TCoefficientType>
::GeneratePointsToIndex()
{
  // m_PointsToIndex is used to convert a sequential location to an N-dimension
  // index vector.  This is precomputed to save time during the interpolation routine.
  m_PointsToIndex.resize(m_MaxNumberInterpolationPoints);
  for (unsigned int p = 0; p < m_MaxNumberInterpolationPoints; ++p)
    {
    int           pp = p;
    unsigned long indexFactor[ImageDimension];
    indexFactor[0] = 1;
    for (int j = 1; j < static_cast<int>(ImageDimension); ++j)
      {
      indexFactor[j] = indexFactor[j - 1] * (m_SplineOrder + 1);
      }
    for (int j = (static_cast<int>(ImageDimension) - 1); j >= 0; j--)
      {
      m_PointsToIndex[p][j] = pp / indexFactor[j];
      pp = pp % indexFactor[j];
      }
    }
}

template <class TImageType, class TCoordRep, class TCoefficientType>
void
BSplineInterpolateImageFunction<TImageType, TCoordRep, TCoefficientType>
::DetermineRegionOfSupport(vnl_matrix<long>& evaluateIndex,
                           const ContinuousIndexType& x,
                           unsigned int splineOrder) const
{
  long indx;

// compute the interpolation indexes
  for (unsigned int n = 0; n < ImageDimension; ++n)
    {
    if (splineOrder & 1)     // Use this index calculation for odd splineOrder
      {
      indx = (long) vcl_floor((float) x[n]) - splineOrder / 2;
      //std::cout<<"x: "<<x<<std::endl;
      //std::cout<<"splineOrder: "<<splineOrder<<std::endl;
      //std::cout<<"indx: "<<indx<<std::endl;
      for (unsigned int k = 0; k <= splineOrder; ++k)
        {
        evaluateIndex[n][k] = indx++;
        }
      }
    else                       // Use this index calculation for even splineOrder
      {

      indx = (long) vcl_floor((float) (x[n] + 0.5)) - splineOrder / 2;
      //std::cout<<"x: "<<x<<std::endl;
      //std::cout<<"splineOrder: "<<splineOrder<<std::endl;
      //std::cout<<"indx: "<<indx<<std::endl;
      for (unsigned int k = 0; k <= splineOrder; ++k)
        {
        evaluateIndex[n][k] = indx++;
        }
      }
    }
}

template <class TImageType, class TCoordRep, class TCoefficientType>
void
BSplineInterpolateImageFunction<TImageType, TCoordRep, TCoefficientType>
::ApplyMirrorBoundaryConditions(vnl_matrix<long>& evaluateIndex,
                                unsigned int splineOrder) const
{

  for (unsigned int n = 0; n < ImageDimension; ++n)
    {
    long dataLength =  m_DataLength[n];
    long dataOffset = m_CurrentBufferedRegion.GetIndex()[n];

    // apply the mirror boundary conditions
    // TODO:  We could implement other boundary options beside mirror
    if (m_DataLength[n] == 1)
      {
      for (unsigned int k = 0; k <= splineOrder; ++k)
        {
        evaluateIndex[n][k] = 0;
        }
      }
    else
      {
      for (unsigned int k = 0; k <= splineOrder; ++k)
        {
        // btw - Think about this couldn't this be replaced with a more elagent modulus method?
        evaluateIndex[n][k] =
          (evaluateIndex[n][k] < dataOffset) ? (dataOffset + (dataOffset - evaluateIndex[n][k]) % dataLength)
          : (evaluateIndex[n][k]);
        if ((long) dataLength + dataOffset <= evaluateIndex[n][k])
          {
          evaluateIndex[n][k] = dataOffset + dataLength - (evaluateIndex[n][k] - dataOffset - dataLength) % dataLength;
          }
        }

      }

    }
}

} // namespace otb

#endif