This file is indexed.

/usr/include/openturns/swig/HyperbolicAnisotropicEnumerateFunction_doc.i is in libopenturns-dev 1.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
%feature("docstring") OT::HyperbolicAnisotropicEnumerateFunction
"Hyperbolic and anisotropic enumerate function.

Available constructors:
    HyperbolicAnisotropicEnumerateFunction(*dim*)

    HyperbolicAnisotropicEnumerateFunction(*dim, q*)

    HyperbolicAnisotropicEnumerateFunction(*weight*)

    HyperbolicAnisotropicEnumerateFunction(*weight, q*)

Parameters
----------
dim : integer
    Dimension of the :class:`~openturns.EnumerateFunction`. *dim* must be equal
    to the dimension of the :class:`~openturns.OrthogonalBasis`.
q : float
    Correspond to the q-quasi norm parameter. If not precised, :math:`q = 0.4`.
weight : sequence of float
    Weights of the indices in each dimension. If not precised, all weights are
    equals to :math:`w_i = 1`.

See also
--------
EnumerateFunction, LinearEnumerateFunction

Notes
-----
The hyperbolic truncation strategy is inspired by the so-called sparsity-of-
effects principle, which states that most models are principally governed by
main effects and low-order interactions. Accordingly, one wishes to define an
enumeration strategy which first selects those multi-indices related to main
effects, i.e. with a reasonably small number of nonzero components, prior to
selecting those associated with higher-order interactions.

For any real number :math:`q \\\\in ]0, 1]`, one defines the anisotropic hyperbolic
norm of a multi-index :math:`a` by:

.. math::
    
    \\\\| \\\\vect{a} \\\\|_{\\\\vect{w}, q} = \\\\left( \\\\sum_{i=1}^{n_X} w_i a^q \\\\right)^{1/q}

where the :math:`w_i`'s are real positive numbers. This would lead to first
select the basis polynomials depending on a specific subset of input variables.

Examples
--------
>>> import openturns as ot
>>> # 4-dimensional case
>>> enumerateFunction = ot.HyperbolicAnisotropicEnumerateFunction(2, 0.5)
>>> for i in range(10):
...     print(enumerateFunction(i))
[0,0]
[1,0]
[0,1]
[2,0]
[0,2]
[3,0]
[0,3]
[1,1]
[4,0]
[0,4]
"

// ---------------------------------------------------------------------

%feature("docstring") OT::HyperbolicAnisotropicEnumerateFunction::getQ
"Accessor to the norm.

Returns
-------
q : float
    q-quasi norm parameter."

// ---------------------------------------------------------------------

%feature("docstring") OT::HyperbolicAnisotropicEnumerateFunction::getWeight
"Accessor to the weights.

Returns
-------
w : :class:`~openturns.NumericalPoint`
    Weights of the indices in each dimension."

// ---------------------------------------------------------------------

%feature("docstring") OT::HyperbolicAnisotropicEnumerateFunction::setQ
"Accessor to the norm.

Parameters
----------
q : float
    q-quasi norm parameter."

// ---------------------------------------------------------------------

%feature("docstring") OT::HyperbolicAnisotropicEnumerateFunction::setWeight
"Accessor to the weights.

Parameters
----------
w : sequence of float
    Weights of the indices in each dimension."