/usr/include/SurgSim/Physics/FemRepresentation.h is in libopensurgsim-dev 0.7.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 | // This file is a part of the OpenSurgSim project.
// Copyright 2013, SimQuest Solutions Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SURGSIM_PHYSICS_FEMREPRESENTATION_H
#define SURGSIM_PHYSICS_FEMREPRESENTATION_H
#include <memory>
#include "SurgSim/DataStructures/IndexedLocalCoordinate.h"
#include "SurgSim/Math/Matrix.h"
#include "SurgSim/Math/SparseMatrix.h"
#include "SurgSim/Math/Vector.h"
#include "SurgSim/Physics/DeformableRepresentation.h"
#include "SurgSim/Physics/Fem.h"
namespace SurgSim
{
namespace Physics
{
class FemElement;
class FemPlyReaderDelegate;
/// Finite Element Model (a.k.a FEM) is a deformable model (a set of nodes connected by FemElement).
/// \note A fem is a DeformableRepresentation (Physics::Representation and Math::OdeEquation), therefore it defines
/// a dynamic system \f$M.a=F(x,v)\f$
/// \note + The model handles damping through the Rayleigh damping (it is a combination of mass and stiffness)
/// \note + The model handles compliance warping (optional) from the paper:
/// \note "Efficient Contact Modeling using Compliance Warping", G Saupin, C Duriez, S Cotin, L Grisoni;
/// Computer %Graphics International (CGI), Istanbul, Turkey, june 2008.
/// \note To use compliance warping, it needs to be turned on by calling setComplianceWarping(true) and the method
/// updateNodesRotations() needs to be overloaded properly.
class FemRepresentation : public DeformableRepresentation
{
public:
/// Constructor
/// \param name The name of the FemRepresentation
explicit FemRepresentation(const std::string& name);
/// Destructor
virtual ~FemRepresentation();
/// Loads the FEM file into an Fem class data structure
/// \param filename The file to load
virtual void loadFem(const std::string& filename) = 0;
/// Sets the FemElement type pulled from the object factory
/// \param type A string of the full registered OSS class name in the factory
virtual void setFemElementType(const std::string& type);
/// Gets the FemElement type pulled from the object factory
/// \return A string of the full registered OSS class name in the factory
const std::string& getFemElementType() const;
/// Adds a FemElement
/// \param element The FemElement to add to the representation
void addFemElement(const std::shared_ptr<FemElement> element);
/// Gets the number of FemElement
/// \return the number of FemElement
size_t getNumFemElements() const;
/// Retrieves a given FemElement from its id
/// \param femElementId The FemElement id for which the FemElement is requested
/// \return The FemElement for the given femElementId
/// \note The FemElement is returned with read/write access
/// \note Out of range femElementId will raise an exception
std::shared_ptr<FemElement> getFemElement(size_t femElementId);
/// Gets the total mass of the fem
/// \return The total mass of the fem (in Kg)
double getTotalMass() const;
/// Gets the Rayleigh stiffness parameter
/// \return The Rayleigh stiffness parameter
double getRayleighDampingStiffness() const;
/// Gets the Rayleigh mass parameter
/// \return The Rayleigh mass parameter
double getRayleighDampingMass() const;
/// Sets the Rayleigh stiffness parameter
/// \param stiffnessCoef The Rayleigh stiffness parameter
void setRayleighDampingStiffness(double stiffnessCoef);
/// Sets the Rayleigh mass parameter
/// \param massCoef The Rayleigh mass parameter
void setRayleighDampingMass(double massCoef);
/// Determines whether the associated coordinate is valid
/// \param coordinate Coordinate to check
/// \return True if coordinate is valid
bool isValidCoordinate(const SurgSim::DataStructures::IndexedLocalCoordinate& coordinate) const;
/// Preprocessing done before the update call
/// \param dt The time step (in seconds)
void beforeUpdate(double dt) override;
void update(double dt) override;
/// Set the compliance warping flag
/// \param useComplianceWarping True to use compliance warping, False otherwise
/// \exception SurgSim::Framework::AssertionFailure If the call is done after initialization
/// \note Compliance warping is currently disabled in this version.
void setComplianceWarping(bool useComplianceWarping);
/// Get the compliance warping flag (default = false)
/// \return True if compliance warping is used, False otherwise
bool getComplianceWarping() const;
/// Calculate the product C.b where C is the compliance matrix with boundary conditions
/// \param state \f$(x, v)\f$ the current position and velocity to evaluate the various terms with
/// \param b The input matrix b
/// \return Returns the matrix \f$C.b\f$
Math::Matrix applyCompliance(const Math::OdeState& state, const Math::Matrix& b) override;
const SurgSim::Math::Matrix& getComplianceMatrix() const override;
void updateFMDK(const SurgSim::Math::OdeState& state, int options) override;
protected:
/// Adds the Rayleigh damping forces
/// \param[in,out] f The force vector to cumulate the Rayleigh damping force into
/// \param state The state vector containing positions and velocities
/// \param useGlobalMassMatrix, useGlobalStiffnessMatrix True indicates that the global mass and stiffness matrices
/// should be used (F = -c.M.v - d.K.v)
/// \param scale A scaling factor to apply on the damping force
/// \note Damping matrix D = c.M + d.K (Rayleigh damping definition)
/// \note F = - D.v = -c.M.v - d.K.v
/// \note If {useGlobalMassMatrix | useGlobalStiffnessMatrix} is True, {M | K} will be used
/// \note If {useGlobalMassMatrix | useGlobalStiffnessMatrix} is False
/// \note the {mass|stiffness} component will be computed FemElement by FemElement
void addRayleighDampingForce(SurgSim::Math::Vector* f, const SurgSim::Math::OdeState& state,
bool useGlobalMassMatrix = false, bool useGlobalStiffnessMatrix = false,
double scale = 1.0);
/// Adds the FemElements forces to f (given a state)
/// \param[in,out] f The force vector to cumulate the FemElements forces into
/// \param state The state vector containing positions and velocities
/// \param scale A scaling factor to scale the FemElements forces with
void addFemElementsForce(SurgSim::Math::Vector* f, const SurgSim::Math::OdeState& state, double scale = 1.0);
/// Adds the gravity force to f (given a state)
/// \param[in,out] f The force vector to cumulate the gravity force into
/// \param state The state vector containing positions and velocities
/// \param scale A scaling factor to scale the gravity force with
/// \note This method does not do anything if gravity is disabled
void addGravityForce(SurgSim::Math::Vector* f, const SurgSim::Math::OdeState& state, double scale = 1.0);
bool doInitialize() override;
/// Updates the compliance matrix using nodes transformation (useful for compliance warping)
/// \param state The state to compute the nodes transformation from
/// \note This computes the diagonal block matrix m_complianceWarpingTransformation and
/// transforms the initial compliance matrix with it.
void updateComplianceMatrix(const SurgSim::Math::OdeState& state);
/// Retrieves a specific node transformation (useful for compliance warping)
/// \param state The state to extract the node transformation from
/// \param nodeId The node to update the rotation for
/// \return The node transformation. i.e. a numDofPerNode x numDofPerNode matrix
virtual SurgSim::Math::Matrix getNodeTransformation(const SurgSim::Math::OdeState& state, size_t nodeId);
/// Gets the flag keeping track of the initial compliance matrix calculation (compliance warping case)
/// \return True if the initial compliance matrix has been computed, False otherwise
bool isInitialComplianceMatrixComputed() const;
/// Sets the flag keeping track of the initial compliance matrix calculation (compliance warping case)
/// \param flag True if the initial compliance matrix is computed, False otherwise
void setIsInitialComplianceMatrixComputed(bool flag);
void computeF(const SurgSim::Math::OdeState& state) override;
void computeM(const SurgSim::Math::OdeState& state) override;
void computeD(const SurgSim::Math::OdeState& state) override;
void computeK(const SurgSim::Math::OdeState& state) override;
void computeFMDK(const SurgSim::Math::OdeState& state) override;
/// Useful information per node
std::vector<double> m_massPerNode; ///< Useful in setting up the gravity force F=mg
/// FemElements
std::vector<std::shared_ptr<FemElement>> m_femElements;
/// The FemElement factory parameter invoked in doInitialize() when using a MeshAsset
/// either with LoadFem(const std::stirng& filename) or setFem(std::shared_ptr<Asset> mesh)
/// This ensures that when using a mesh Asset, a single FemElement type is used. Therefore we do
/// not need to define this type in the ply file, but rather is part of the Representation properties (YAML).
std::string m_femElementType;
private:
/// Rayleigh damping parameters (massCoefficient and stiffnessCoefficient)
/// D = massCoefficient.M + stiffnessCoefficient.K
/// Matrices: D = damping, M = mass, K = stiffness
struct
{
double massCoefficient;
double stiffnessCoefficient;
} m_rayleighDamping;
bool m_useComplianceWarping; ///< Are we using Compliance Warping or not ?
bool m_isInitialComplianceMatrixComputed; ///< For compliance warping: Is the initial compliance matrix computed ?
SurgSim::Math::Matrix m_complianceWarpingMatrix; ///< The compliance warping matrix if compliance warping in use
/// The system-size transformation matrix. It contains nodes transformation on the diagonal blocks.
Eigen::SparseMatrix<double> m_complianceWarpingTransformation;
};
} // namespace Physics
} // namespace SurgSim
#endif // SURGSIM_PHYSICS_FEMREPRESENTATION_H
|