This file is indexed.

/usr/include/SurgSim/Physics/FemElement.h is in libopensurgsim-dev 0.7.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
// This file is a part of the OpenSurgSim project.
// Copyright 2013, SimQuest Solutions Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef SURGSIM_PHYSICS_FEMELEMENT_H
#define SURGSIM_PHYSICS_FEMELEMENT_H

#include <vector>

#include "SurgSim/Framework/ObjectFactory.h"
#include "SurgSim/Math/Matrix.h"
#include "SurgSim/Math/SparseMatrix.h"
#include "SurgSim/Math/Vector.h"
#include "SurgSim/Physics/Fem.h"

namespace SurgSim
{

namespace Math
{
class OdeState;
};

namespace Physics
{

/// Base class for all Fem Element (1D, 2D, 3D)
/// It handles the node ids to which it is connected and requires all derived classes to compute the element
/// mass matrix and the force vector along with the derivatives (the stiffness and damping matrices).
/// A extra method also exist to compute all of them at once for performance purposes.
/// It holds on to the actual computed values (m_f, m_M, m_D, m_K) as its size is not predefined from outside
/// and would requires intensive (de)allocation or a temporary variable anyway.
/// It contains the linear elasticity parameter (Young modulus and Poisson ratio) as well as mass density
class FemElement
{
public:
	/// Constructor
	FemElement();

	/// Virtual destructor
	virtual ~FemElement();

	/// Initialize the FemElement once everything has been set
	/// \param state The state to initialize the FemElement with
	virtual void initialize(const SurgSim::Math::OdeState& state);

	typedef SurgSim::Framework::ObjectFactory1<FemElement, std::shared_ptr<FemElementStructs::FemElementParameter>>
		FactoryType;

	static FactoryType& getFactory();

	/// Gets the number of degree of freedom per node
	/// \return The number of dof per node
	size_t getNumDofPerNode() const;

	/// Gets the number of nodes connected by this element
	/// \return The number of nodes
	size_t getNumNodes() const;

	/// Gets the elementNodeId-th node id
	/// \return The requested node id
	size_t getNodeId(size_t elementNodeId) const;

	/// Gets the node ids for this element
	/// \return A vector containing the node ids on which the element is defined
	const std::vector<size_t>& getNodeIds() const;

	/// Sets the Young modulus (in N.m-2)
	/// \param E The Young modulus
	void setYoungModulus(double E);
	/// Gets the Young modulus (in N.m-2)
	/// \return The Young modulus
	double getYoungModulus() const;

	/// Sets the Poisson ratio (unitless)
	/// \param nu The Poisson ratio
	void setPoissonRatio(double nu);
	/// Gets the Poisson ratio (unitless)
	/// \return The Poisson ratio
	double getPoissonRatio() const;

	/// Sets the mass density (in Kg.m-3)
	/// \param rho The mass density
	void setMassDensity(double rho);
	/// Gets the mass density (in Kg.m-3)
	/// \return The mass density
	double getMassDensity() const;

	/// Gets the element mass based on the input state (in Kg)
	/// \param state The state to compute the mass with
	/// \return The mass of this element (in Kg)
	double getMass(const SurgSim::Math::OdeState& state) const;

	/// Gets the element volume based on the input state (in m-3)
	/// \param state The state to compute the volume with
	/// \return The volume of this element (in m-3)
	virtual double getVolume(const SurgSim::Math::OdeState& state) const = 0;

	/// Adds the element force (computed for a given state) to a complete system force vector F (assembly)
	/// \param[in,out] F The complete system force vector to add the element force into
	/// \param scale A factor to scale the added force with
	/// \note The element force is of size (getNumDofPerNode() x getNumNodes())
	/// \note This method supposes that the incoming state contains information with the same number of dof
	/// \note per node as getNumDofPerNode()
	virtual void addForce(SurgSim::Math::Vector* F, double scale = 1.0) const;

	/// Adds the element mass matrix M (computed for a given state) to a complete system mass matrix M (assembly)
	/// \param[in,out] M The complete system mass matrix to add the element mass-matrix into
	/// \param scale A factor to scale the added mass matrix with
	/// \note The element mass matrix is square of size getNumDofPerNode() x getNumNodes()
	/// \note This method supposes that the incoming state contains information with the same number of
	/// \note dof per node as getNumDofPerNode()
	virtual void addMass(SurgSim::Math::SparseMatrix* M, double scale = 1.0) const;

	/// Adds the element damping matrix D (= -df/dv) (comuted for a given state)
	/// to a complete system damping matrix D (assembly)
	/// \param[in,out] D The complete system damping matrix to add the element damping matrix into
	/// \param scale A factor to scale the added damping matrix with
	/// \note The element damping matrix is square of size getNumDofPerNode() x getNumNodes()
	/// \note This method supposes that the incoming state contains information with the same number of
	/// \note dof per node as getNumDofPerNode()
	virtual void addDamping(SurgSim::Math::SparseMatrix* D, double scale = 1.0) const;

	/// Adds the element stiffness matrix K (= -df/dx) (computed for a given state)
	/// to a complete system stiffness matrix K (assembly)
	/// \param[in,out] K The complete system stiffness matrix to add the element stiffness matrix into
	/// \param scale A factor to scale the added stiffness matrix with
	/// \note The element stiffness matrix is square of size getNumDofPerNode() x getNumNodes()
	/// \note This method supposes that the incoming state contains information with the same number of
	/// \note dof per node as getNumDofPerNode()
	virtual void addStiffness(SurgSim::Math::SparseMatrix* K, double scale = 1.0) const;

	/// Adds the element force vector, mass, stiffness and damping matrices (computed for a given state)
	/// into a complete system data structure F, M, D, K (assembly)
	/// \param[in,out] F The complete system force vector to add the element force into
	/// \param[in,out] M The complete system mass matrix to add the element mass matrix into
	/// \param[in,out] D The complete system damping matrix to add the element damping matrix into
	/// \param[in,out] K The complete system stiffness matrix to add the element stiffness matrix into
	/// \note This method supposes that the incoming state contains information with the same number of dof
	/// \note per node as getNumDofPerNode()
	virtual void addFMDK(SurgSim::Math::Vector* F,
						 SurgSim::Math::SparseMatrix* M,
						 SurgSim::Math::SparseMatrix* D,
						 SurgSim::Math::SparseMatrix* K) const;

	/// Adds the element matrix-vector contribution F += (alphaM.M + alphaD.D + alphaK.K).x (computed for a given state)
	/// into a complete system data structure F (assembly)
	/// \param alphaM The scaling factor for the mass contribution
	/// \param alphaD The scaling factor for the damping contribution
	/// \param alphaK The scaling factor for the stiffness contribution
	/// \param x A complete system vector to be used as the vector in the matrix-vector multiplication
	/// \param[in,out] F The complete system force vector to add the element matrix-vector contribution into
	/// \note This method supposes that the incoming state contains information with the same number of dof
	/// \note per node as getNumDofPerNode()
	virtual void addMatVec(double alphaM, double alphaD, double alphaK,
						   const SurgSim::Math::Vector& x, SurgSim::Math::Vector* F) const;

	/// Determines whether a given natural coordinate is valid
	/// \param naturalCoordinate Coordinate to check
	/// \return True if valid
	bool isValidCoordinate(const SurgSim::Math::Vector& naturalCoordinate) const;

	/// Computes a given natural coordinate in cartesian coordinates
	/// \param state The state at which to transform coordinates
	/// \param naturalCoordinate The coordinates to transform
	/// \return The resultant cartesian coordinates
	virtual SurgSim::Math::Vector computeCartesianCoordinate(
		const SurgSim::Math::OdeState& state,
		const SurgSim::Math::Vector& naturalCoordinate) const = 0;

	/// Computes a natural coordinate given a global coordinate
	/// \param state The state at which to transform coordinates
	/// \param cartesianCoordinate The coordinates to transform
	/// \return The resultant natural coordinates
	virtual SurgSim::Math::Vector computeNaturalCoordinate(
		const SurgSim::Math::OdeState& state,
		const SurgSim::Math::Vector& cartesianCoordinate) const = 0;

	/// Helper method to add a sub-matrix made of squared-blocks into a matrix, for the sake of clarity
	/// \tparam DerivedSub The type of the 'subMatrix' (can usually be inferred). Can be any type, but does not
	/// support Eigen expression. If it is a Sparse storage type the alignment must be the same
	/// as the SparseMatrix: Opt.
	/// Note that no assertion or verification is done on this type.
	/// \tparam T, Opt, Index Types and option defining the output matrix type SparseMatrix<T, Opt, Index>
	/// \param subMatrix The sub-matrix (containing all the squared-blocks)
	/// \param blockIds Vector of block indices (for accessing matrix) corresponding to the blocks in sub-matrix
	/// \param blockSize The blocks size
	/// \param[out] matrix The matrix to add the sub-matrix blocks into
	/// \param initialize Optional parameter, default true. If true, the matrix form is assumed to be undefined and is
	/// initialized when necessary. If false, the matrix form is assumed to be previously defined.
	template <typename DerivedSub, typename T, int Opt, typename Index>
	void assembleMatrixBlocks(const DerivedSub& subMatrix, const std::vector<size_t> blockIds,
							  size_t blockSize, Eigen::SparseMatrix<T, Opt, Index>* matrix,
							  bool initialize = true) const;

	/// Update the FemElement based on the given state.
	/// \param state \f$(x, v)\f$ the current position and velocity to evaluate the various terms with
	/// \param options Flag to specify which of the F, M, D, K needs to be updated
	void updateFMDK(const Math::OdeState& state, int options);

protected:
	/// Sets the number of degrees of freedom per node
	/// \param numDofPerNode The number of dof per node
	/// \note Protected to be accessible only to derived classes which should be the only
	/// \note ones able to set this parameter
	void setNumDofPerNode(size_t numDofPerNode);

	/// Update the FemElement based on the given state.
	/// \param state \f$(x, v)\f$ the current position and velocity to evaluate the various terms with
	/// \param options Flag to specify which of the F, M, D, K needs to be updated
	virtual void doUpdateFMDK(const Math::OdeState& state, int options) = 0;

	/// Initialize f, M, D, K variables.
	void initializeFMDK();

	/// Function to be overridden by the derived classes to initialize the f, M, D, K variables.
	virtual void doInitializeFMDK();

	/// Number of degree of freedom per node for this element
	size_t m_numDofPerNode;

	/// Node ids connected by this element
	std::vector<size_t> m_nodeIds;

	/// Mass density (in Kg.m-3)
	double m_rho;

	/// Young modulus (in N.m-2)
	double m_E;

	/// Poisson ratio (unitless)
	double m_nu;

	/// The force vector.
	SurgSim::Math::Vector m_f;

	/// The mass matrix.
	SurgSim::Math::Matrix m_M;

	/// The damping matrix.
	SurgSim::Math::Matrix m_D;

	/// Flag to specify of the damping is used.
	bool m_useDamping;

	/// The stiffness matrix.
	SurgSim::Math::Matrix m_K;

private:
	/// Flag to check in the f, M, D, K variables have been initialized.
	bool m_initializedFMDK;
};

} // namespace Physics

} // namespace SurgSim

#include "SurgSim/Physics/FemElement-inl.h"

#endif // SURGSIM_PHYSICS_FEMELEMENT_H