This file is indexed.

/usr/include/SurgSim/Math/SegmentSegmentCcdContactCalculation-inl.h is in libopensurgsim-dev 0.7.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
// This file is a part of the OpenSurgSim project.
// Copyright 2013-2016, SimQuest Solutions Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef SURGSIM_MATH_SEGMENTSEGMENTCCDCONTACTCALCULATION_INL_H
#define SURGSIM_MATH_SEGMENTSEGMENTCCDCONTACTCALCULATION_INL_H

#include <Eigen/Core>
#include <Eigen/Geometry>

#include "SurgSim/Math/CubicSolver.h"
#include "SurgSim/Math/Scalar.h"

namespace SurgSim
{
namespace Math
{

/// Check if 2 segments intersect at a given time of their motion
/// \tparam T		Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt	Eigen Matrix options, can usually be inferred.
/// \param time The time of coplanarity of the 4 points (A(t), B(t), C(t), D(t) are expected to be coplanar)
/// \param A, B The 1st segment motion (each point's motion is from first to second)
/// \param C, D The 2nd segment motion (each point's motion is from first to second)
/// \param[out] barycentricCoordinates The barycentric coordinates of the intersection in AB(t) and CD(t)
/// i.e. P(t) = A + barycentricCoordinates[0].AB(t) = C + barycentricCoordinates[1].CD
/// \return True if AB(t) is intersecting CD(t), False otherwise
template <class T, int MOpt>
bool areSegmentsIntersecting(
	T time,
	const std::pair<Eigen::Matrix<T, 3, 1, MOpt>, Eigen::Matrix<T, 3, 1, MOpt>>& A,
	const std::pair<Eigen::Matrix<T, 3, 1, MOpt>, Eigen::Matrix<T, 3, 1, MOpt>>& B,
	const std::pair<Eigen::Matrix<T, 3, 1, MOpt>, Eigen::Matrix<T, 3, 1, MOpt>>& C,
	const std::pair<Eigen::Matrix<T, 3, 1, MOpt>, Eigen::Matrix<T, 3, 1, MOpt>>& D,
	Eigen::Matrix<T, 2, 1, MOpt>* barycentricCoordinates)
{
	Eigen::Matrix<T, 3, 1, MOpt> At = interpolate(A.first, A.second, time);
	Eigen::Matrix<T, 3, 1, MOpt> Bt = interpolate(B.first, B.second, time);
	Eigen::Matrix<T, 3, 1, MOpt> Ct = interpolate(C.first, C.second, time);
	Eigen::Matrix<T, 3, 1, MOpt> Dt = interpolate(D.first, D.second, time);

	// P = A + alpha.AB and P = C + beta.CD
	// A + alpha.AB = C + beta.CD
	// (AB -CD).(alpha) = (AC) which is a 3x2 linear system A.x = b
	//          (beta )
	// Let's solve it using (A^t.A)^-1.(A^t.A) = Id2x2
	// (A^t.A)^-1.A^t.(A.x) = (A^t.A)^-1.A^t.b
	// x = (A^t.A)^-1.A^t.b

	Eigen::Matrix<T, 3, 2> matrixA;
	matrixA.col(0) = Bt - At;
	matrixA.col(1) = -(Dt - Ct);

	Eigen::Matrix<T, 3, 1, MOpt> b = Ct - At;
	Eigen::Matrix<T, 2, 2> inv;
	bool invertible;
	(matrixA.transpose() * matrixA).computeInverseWithCheck(inv, invertible);
	if (!invertible)
	{
		return false;
	}

	*barycentricCoordinates = inv * matrixA.transpose() * b;

	for (int i = 0; i < 2; i++)
	{
		if (std::abs((*barycentricCoordinates)[i]) < Math::Geometry::ScalarEpsilon)
		{
			(*barycentricCoordinates)[i] = 0.0;
		}
		if (std::abs(1.0 - (*barycentricCoordinates)[i]) < Math::Geometry::ScalarEpsilon)
		{
			(*barycentricCoordinates)[i] = 1.0;
		}
	}

	return
		(*barycentricCoordinates)[0] >= 0.0 && (*barycentricCoordinates)[0] <= 1.0 &&
		(*barycentricCoordinates)[1] >= 0.0 && (*barycentricCoordinates)[1] <= 1.0;
}

/// Continuous collision detection between two segments AB and CD
/// \tparam T		Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt	Eigen Matrix options, can usually be inferred.
/// \param A, B The 1st segment motion (each point's motion is from first to second)
/// \param C, D The 2nd segment motion (each point's motion is from first to second)
/// \param[out] timeOfImpact The time of impact within [0..1] if an collision is found
/// \param[out] s0p1Factor, s1p1Factor The barycentric coordinate of the contact point on the 2 segments
/// i.e. ContactPoint(timeOfImpact) = A(timeOfImpact) + s0p1Factor.AB(timeOfImpact)
/// i.e. ContactPoint(timeOfImpact) = C(timeOfImpact) + s1p1Factor.CD(timeOfImpact)
/// \return True if the given segment/segment motions intersect, False otherwise
/// \note Simple cubic-solver https://graphics.stanford.edu/courses/cs468-02-winter/Papers/Collisions_vetements.pdf
/// \note Optimized method http://www.robotics.sei.ecnu.edu.cn/CCDLY/GMOD15.pdf
/// \note Optimized method https://www.cs.ubc.ca/~rbridson/docs/brochu-siggraph2012-ccd.pdf
template <class T, int MOpt> inline
bool calculateCcdContactSegmentSegment(
	const std::pair<Eigen::Matrix<T, 3, 1, MOpt>, Eigen::Matrix<T, 3, 1, MOpt>>& A,
	const std::pair<Eigen::Matrix<T, 3, 1, MOpt>, Eigen::Matrix<T, 3, 1, MOpt>>& B,
	const std::pair<Eigen::Matrix<T, 3, 1, MOpt>, Eigen::Matrix<T, 3, 1, MOpt>>& C,
	const std::pair<Eigen::Matrix<T, 3, 1, MOpt>, Eigen::Matrix<T, 3, 1, MOpt>>& D,
	T* timeOfImpact, T* s0p1Factor, T* s1p1Factor)
{
	std::array<T, 3> roots;
	int numberOfRoots = timesOfCoplanarityInRange01(A, B, C, D, &roots);

	// The roots are all in [0..1] and ordered ascendingly
	for (int rootId = 0; rootId < numberOfRoots; ++rootId)
	{
		Eigen::Matrix<T, 2, 1, MOpt> barycentricCoordinates;
		if (areSegmentsIntersecting(roots[rootId], A, B, C, D, &barycentricCoordinates))
		{
			// The segments AB and CD are coplanar at time t, and they intersect
			*timeOfImpact = roots[rootId];
			*s0p1Factor = barycentricCoordinates[0];
			*s1p1Factor = barycentricCoordinates[1];

			// None of these assertion should be necessary, but just to double check
			SURGSIM_ASSERT(*timeOfImpact >= 0.0 && *timeOfImpact <= 1.0);
			SURGSIM_ASSERT(*s0p1Factor >= 0.0 && *s0p1Factor <= 1.0);
			SURGSIM_ASSERT(*s1p1Factor >= 0.0 && *s1p1Factor <= 1.0);

			return true;
		}
	}

	return false;
}

}; // namespace Math
}; // namespace SurgSim

#endif // SURGSIM_MATH_SEGMENTSEGMENTCCDCONTACTCALCULATION_INL_H