/usr/include/SurgSim/Math/SegmentSegmentCcdContactCalculation-inl.h is in libopensurgsim-dev 0.7.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 | // This file is a part of the OpenSurgSim project.
// Copyright 2013-2016, SimQuest Solutions Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SURGSIM_MATH_SEGMENTSEGMENTCCDCONTACTCALCULATION_INL_H
#define SURGSIM_MATH_SEGMENTSEGMENTCCDCONTACTCALCULATION_INL_H
#include <Eigen/Core>
#include <Eigen/Geometry>
#include "SurgSim/Math/CubicSolver.h"
#include "SurgSim/Math/Scalar.h"
namespace SurgSim
{
namespace Math
{
/// Check if 2 segments intersect at a given time of their motion
/// \tparam T Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param time The time of coplanarity of the 4 points (A(t), B(t), C(t), D(t) are expected to be coplanar)
/// \param A, B The 1st segment motion (each point's motion is from first to second)
/// \param C, D The 2nd segment motion (each point's motion is from first to second)
/// \param[out] barycentricCoordinates The barycentric coordinates of the intersection in AB(t) and CD(t)
/// i.e. P(t) = A + barycentricCoordinates[0].AB(t) = C + barycentricCoordinates[1].CD
/// \return True if AB(t) is intersecting CD(t), False otherwise
template <class T, int MOpt>
bool areSegmentsIntersecting(
T time,
const std::pair<Eigen::Matrix<T, 3, 1, MOpt>, Eigen::Matrix<T, 3, 1, MOpt>>& A,
const std::pair<Eigen::Matrix<T, 3, 1, MOpt>, Eigen::Matrix<T, 3, 1, MOpt>>& B,
const std::pair<Eigen::Matrix<T, 3, 1, MOpt>, Eigen::Matrix<T, 3, 1, MOpt>>& C,
const std::pair<Eigen::Matrix<T, 3, 1, MOpt>, Eigen::Matrix<T, 3, 1, MOpt>>& D,
Eigen::Matrix<T, 2, 1, MOpt>* barycentricCoordinates)
{
Eigen::Matrix<T, 3, 1, MOpt> At = interpolate(A.first, A.second, time);
Eigen::Matrix<T, 3, 1, MOpt> Bt = interpolate(B.first, B.second, time);
Eigen::Matrix<T, 3, 1, MOpt> Ct = interpolate(C.first, C.second, time);
Eigen::Matrix<T, 3, 1, MOpt> Dt = interpolate(D.first, D.second, time);
// P = A + alpha.AB and P = C + beta.CD
// A + alpha.AB = C + beta.CD
// (AB -CD).(alpha) = (AC) which is a 3x2 linear system A.x = b
// (beta )
// Let's solve it using (A^t.A)^-1.(A^t.A) = Id2x2
// (A^t.A)^-1.A^t.(A.x) = (A^t.A)^-1.A^t.b
// x = (A^t.A)^-1.A^t.b
Eigen::Matrix<T, 3, 2> matrixA;
matrixA.col(0) = Bt - At;
matrixA.col(1) = -(Dt - Ct);
Eigen::Matrix<T, 3, 1, MOpt> b = Ct - At;
Eigen::Matrix<T, 2, 2> inv;
bool invertible;
(matrixA.transpose() * matrixA).computeInverseWithCheck(inv, invertible);
if (!invertible)
{
return false;
}
*barycentricCoordinates = inv * matrixA.transpose() * b;
for (int i = 0; i < 2; i++)
{
if (std::abs((*barycentricCoordinates)[i]) < Math::Geometry::ScalarEpsilon)
{
(*barycentricCoordinates)[i] = 0.0;
}
if (std::abs(1.0 - (*barycentricCoordinates)[i]) < Math::Geometry::ScalarEpsilon)
{
(*barycentricCoordinates)[i] = 1.0;
}
}
return
(*barycentricCoordinates)[0] >= 0.0 && (*barycentricCoordinates)[0] <= 1.0 &&
(*barycentricCoordinates)[1] >= 0.0 && (*barycentricCoordinates)[1] <= 1.0;
}
/// Continuous collision detection between two segments AB and CD
/// \tparam T Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param A, B The 1st segment motion (each point's motion is from first to second)
/// \param C, D The 2nd segment motion (each point's motion is from first to second)
/// \param[out] timeOfImpact The time of impact within [0..1] if an collision is found
/// \param[out] s0p1Factor, s1p1Factor The barycentric coordinate of the contact point on the 2 segments
/// i.e. ContactPoint(timeOfImpact) = A(timeOfImpact) + s0p1Factor.AB(timeOfImpact)
/// i.e. ContactPoint(timeOfImpact) = C(timeOfImpact) + s1p1Factor.CD(timeOfImpact)
/// \return True if the given segment/segment motions intersect, False otherwise
/// \note Simple cubic-solver https://graphics.stanford.edu/courses/cs468-02-winter/Papers/Collisions_vetements.pdf
/// \note Optimized method http://www.robotics.sei.ecnu.edu.cn/CCDLY/GMOD15.pdf
/// \note Optimized method https://www.cs.ubc.ca/~rbridson/docs/brochu-siggraph2012-ccd.pdf
template <class T, int MOpt> inline
bool calculateCcdContactSegmentSegment(
const std::pair<Eigen::Matrix<T, 3, 1, MOpt>, Eigen::Matrix<T, 3, 1, MOpt>>& A,
const std::pair<Eigen::Matrix<T, 3, 1, MOpt>, Eigen::Matrix<T, 3, 1, MOpt>>& B,
const std::pair<Eigen::Matrix<T, 3, 1, MOpt>, Eigen::Matrix<T, 3, 1, MOpt>>& C,
const std::pair<Eigen::Matrix<T, 3, 1, MOpt>, Eigen::Matrix<T, 3, 1, MOpt>>& D,
T* timeOfImpact, T* s0p1Factor, T* s1p1Factor)
{
std::array<T, 3> roots;
int numberOfRoots = timesOfCoplanarityInRange01(A, B, C, D, &roots);
// The roots are all in [0..1] and ordered ascendingly
for (int rootId = 0; rootId < numberOfRoots; ++rootId)
{
Eigen::Matrix<T, 2, 1, MOpt> barycentricCoordinates;
if (areSegmentsIntersecting(roots[rootId], A, B, C, D, &barycentricCoordinates))
{
// The segments AB and CD are coplanar at time t, and they intersect
*timeOfImpact = roots[rootId];
*s0p1Factor = barycentricCoordinates[0];
*s1p1Factor = barycentricCoordinates[1];
// None of these assertion should be necessary, but just to double check
SURGSIM_ASSERT(*timeOfImpact >= 0.0 && *timeOfImpact <= 1.0);
SURGSIM_ASSERT(*s0p1Factor >= 0.0 && *s0p1Factor <= 1.0);
SURGSIM_ASSERT(*s1p1Factor >= 0.0 && *s1p1Factor <= 1.0);
return true;
}
}
return false;
}
}; // namespace Math
}; // namespace SurgSim
#endif // SURGSIM_MATH_SEGMENTSEGMENTCCDCONTACTCALCULATION_INL_H
|