This file is indexed.

/usr/include/SurgSim/Math/PolynomialRoots-inl.h is in libopensurgsim-dev 0.7.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
// This file is a part of the OpenSurgSim project.
// Copyright 2013, SimQuest Solutions Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef SURGSIM_MATH_POLYNOMIALROOTS_INL_H
#define SURGSIM_MATH_POLYNOMIALROOTS_INL_H

namespace SurgSim
{
namespace Math
{

// PolynomialRootsCommon
template <typename T, int N>
bool PolynomialRootsCommon<T, N>::isDegenerate() const
{
	return m_numRoots == DEGENERATE;
}

template <typename T, int N>
int PolynomialRootsCommon<T, N>::getNumRoots() const
{
	return m_numRoots;
}

template <typename T, int N>
T PolynomialRootsCommon<T, N>::operator[](const int i) const
{
	SURGSIM_ASSERT((m_numRoots > i) && (i >= 0)) <<
			"Requesting a root beyond the number of roots available for this polynomial, " <<
			"or a root with a negative index.";
	return m_roots[i];
}

// roots of an degree-1 polynomial (linear)
template <typename T>
PolynomialRoots<T, 1>::PolynomialRoots(const Polynomial<T, 1>& p, const T& epsilon)
{
	solve<T, 1>(p.getCoefficient(1), p.getCoefficient(0), static_cast<T>(epsilon),
				&(this->m_numRoots), &(this->m_roots));
}

// roots of an degree-2 polynomial (quadratic)
template <typename T>
PolynomialRoots<T, 2>::PolynomialRoots(const Polynomial<T, 2>& p, const T& epsilon)
{
	solve<T, 2>(p.getCoefficient(2), p.getCoefficient(1), p.getCoefficient(0), static_cast<T>(epsilon),
				&(this->m_numRoots), &(this->m_roots));
}

// Utilities: Solve for roots of linear equation a * x + b = y
template <typename T, int N>
void solve(const T& a, const T& b, const T& epsilon, int* numRoots, std::array<T, N>* roots)
{
	static_assert(N >= 1, "Root array is not large enough to hold the roots of the polynomial");
	if (isNearZero(a, epsilon))
	{
		// The "1-st degree polynomial" is really close to a constant.
		// If the constant is zero, there are infinitely many solutions; otherwise there are zero.
		if (isNearZero(b, epsilon))
		{
			*numRoots = PolynomialRootsCommon<T, N>::DEGENERATE; // infinitely many solutions
		}
		else
		{
			*numRoots = 0;
		}
	}
	else
	{
		*numRoots = 1;
		(*roots)[0] = -b / a;
	}
}

// Utilities: Solve for roots of quadratic equation a * x^2 + b * x + c = y
template <typename T, int N>
void solve(const T& a, const T& b, const T& c, const T& epsilon, int* numRoots, std::array<T, N>* roots)
{
	static_assert(N >= 2, "Root array is not large enough to hold the roots of the polynomial");

	if (isNearZero(a, epsilon))
	{
		// The "2nd degree polynomial" is really (close to) 1st degree or less.
		// We can delegate the solution in this case.
		solve<T, N>(b, c, epsilon, numRoots, roots);
		return;
	}

	T discriminant = b * b - 4.0 * a * c;
	if (discriminant > epsilon)
	{
		*numRoots = 2;
		T sqrtDiscriminant = sqrt(discriminant);
		(*roots)[0] = (-b - sqrtDiscriminant) / (2 * a);
		(*roots)[1] = (-b + sqrtDiscriminant) / (2 * a);
		if ((*roots)[0] > (*roots)[1])
		{
			std::swap((*roots)[0], (*roots)[1]);
		}
	}
	else if (discriminant > -epsilon)
	{
		*numRoots = 1;
		(*roots)[0] = -b / (2 * a);
	}
	else
	{
		*numRoots = 0;
	}
}

}; // Math
}; // SurgSim

#endif // SURGSIM_MATH_POLYNOMIALROOTS_INL_H