/usr/include/SurgSim/Math/OdeSolverEulerExplicit.h is in libopensurgsim-dev 0.7.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | // This file is a part of the OpenSurgSim project.
// Copyright 2013, SimQuest Solutions Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SURGSIM_MATH_ODESOLVEREULEREXPLICIT_H
#define SURGSIM_MATH_ODESOLVEREULEREXPLICIT_H
#include "SurgSim/Math/OdeSolver.h"
namespace SurgSim
{
namespace Math
{
/// Euler Explicit ode solver solves the following \f$2^{nd}\f$ order ode
/// \f$M(x(t), v(t)).a(t) = f(t, x(t), v(t))\f$.
/// This ode is solved as an ode of order 1 by defining the state vector
/// \f$y = \left(\begin{array}{c}x\\v\end{array}\right)\f$:
/// \f[
/// y' = \left(\begin{array}{c} x' \\ v' \end{array}\right) =
/// \left(\begin{array}{c} v \\ M(x, v)^{-1}.f(t,x, v) \end{array}\right) =
/// f(t, y)
/// \f]
/// After integrating this equation, we get:
/// \f[ y(t+dt) - y(t) = \int_t^{t+dt} f(t,y) dt \f]
/// \note Euler explicit uses a rectangular numerical integration on the left to evaluate this integral, leading to
/// \f$ \int_t^{t+dt} f(t,y) dt \simeq dt.f(t, y(t))\f$, therefore:
/// \f[
/// \begin{array}{ccc}
/// y(t+dt) - y(t) = dt.f(t, y(t))
/// &
/// \Leftrightarrow
/// &
/// \left\{
/// \begin{array}{ccccl}
/// x(t+dt) &=& x(t) &+& dt.v(t)
/// \\ v(t+dt) &=& v(t) &+& dt.a(t)
/// \end{array}
/// \right.
/// \end{array}
/// \f]
/// \note Euler Explicit is also known as forward Euler as it uses a forward evaluation of the derivative
/// \f$y' = (y(t+dt) - y(t)) / dt\f$ which leads to the same result.
class OdeSolverEulerExplicit : public OdeSolver
{
public:
/// Constructor
/// \param equation The ode equation to be solved
explicit OdeSolverEulerExplicit(OdeEquation* equation);
void solve(double dt, const OdeState& currentState, OdeState* newState, bool computeCompliance = true) override;
protected:
void assembleLinearSystem(double dt, const OdeState& state, const OdeState& newState,
bool computeRHS = true) override;
};
}; // namespace Math
}; // namespace SurgSim
#endif // SURGSIM_MATH_ODESOLVEREULEREXPLICIT_H
|