This file is indexed.

/usr/include/SurgSim/Math/Matrix.h is in libopensurgsim-dev 0.7.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
// This file is a part of the OpenSurgSim project.
// Copyright 2012-2013, SimQuest Solutions Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/// \file
/// Definitions of small fixed-size square matrix types.

#ifndef SURGSIM_MATH_MATRIX_H
#define SURGSIM_MATH_MATRIX_H

#include <vector>

#include <Eigen/Core>
#include <Eigen/Geometry>
#include <Eigen/LU> 		// needed for determinant() and inverse()

namespace SurgSim
{
namespace Math
{

/// A 2x2 matrix of floats.
/// This type (and any structs that contain it) can be safely allocated via new.
typedef Eigen::Matrix<float,  2, 2, Eigen::RowMajor>  Matrix22f;

/// A 3x3 matrix of floats.
/// This type (and any structs that contain it) can be safely allocated via new.
typedef Eigen::Matrix<float,  3, 3, Eigen::RowMajor>  Matrix33f;

/// A 4x4 matrix of floats.
/// This type (and any structs that contain it) can be safely allocated via new.
typedef Eigen::Matrix<float,  4, 4, Eigen::RowMajor>  Matrix44f;

/// A 2x2 matrix of doubles.
/// This type (and any structs that contain it) can be safely allocated via new.
typedef Eigen::Matrix<double, 2, 2, Eigen::RowMajor>  Matrix22d;

/// A 3x3 matrix of doubles.
/// This type (and any structs that contain it) can be safely allocated via new.
typedef Eigen::Matrix<double, 3, 3, Eigen::RowMajor>  Matrix33d;

/// A 4x4 matrix of doubles.
/// This type (and any structs that contain it) can be safely allocated via new.
typedef Eigen::Matrix<double, 4, 4, Eigen::RowMajor>  Matrix44d;

/// A 6x6 matrix of doubles.
/// This type (and any structs that contain it) can be safely allocated via new.
typedef Eigen::Matrix<double, 6, 6, Eigen::RowMajor> Matrix66d;

/// A dynamic size diagonal matrix
typedef Eigen::DiagonalMatrix<double, Eigen::Dynamic> DiagonalMatrix;

/// A dynamic size matrix
typedef Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> Matrix;

/// Create a rotation matrix corresponding to the specified angle (in radians) and axis.
/// \tparam T the numeric data type used for arguments and the return value.  Can usually be deduced.
/// \tparam VOpt the option flags (alignment etc.) used for the axis vector argument.  Can be deduced.
/// \param angle the angle of the rotation, in radians.
/// \param axis the axis of the rotation.
/// \returns the rotation matrix.
template <typename T, int VOpt>
inline Eigen::Matrix<T, 3, 3> makeRotationMatrix(const T& angle, const Eigen::Matrix<T, 3, 1, VOpt>& axis)
{
	return Eigen::AngleAxis<T>(angle, axis).toRotationMatrix();
}

/// Create a skew-symmetric matrix corresponding to the specified vector.  Skew-symmetric matrices are particularly
/// useful for representing a portion of the vector cross-product.
/// \tparam T the numeric data type used for arguments and the return value.  Can usually be deduced.
/// \tparam VOpt the option flags (alignment etc.) used for the vector argument.  Can be deduced.
/// \param vector the vector to be transformed.
/// \returns the skew-symmetric matrix corresponding with the vector argument.
template <typename T, int VOpt>
inline Eigen::Matrix<T, 3, 3> makeSkewSymmetricMatrix(const Eigen::Matrix<T, 3, 1, VOpt>& vector)
{
	Eigen::Matrix<T, 3, 3> result;

	result(0, 0) = 0.0;
	result(0, 1) = -vector(2);
	result(0, 2) = vector(1);

	result(1, 0) = vector(2);
	result(1, 1) = 0.0;
	result(1, 2) = -vector(0);

	result(2, 0) = -vector(1);
	result(2, 1) = vector(0);
	result(2, 2) = 0.0;

	return result;
}

/// Extract the unique vector from the skew-symmetric part of a given matrix.
/// \tparam T the numeric data type used for arguments and the return value.  Can usually be deduced.
/// \tparam MOpt the option flags (alignment etc.) used for the matrix argument.  Can be deduced.
/// \param matrix the matrix to compute the skew symmetric part from.
/// \returns the unique vector defining the skew-symmetric part of the matrix.
/// \note For any vector u, skew(makeSkewSymmetricMatrix(u)) = u
/// \note In general, returns the vector of the skew symmetric part of matrix: (matrix - matrix^T)/2
template <typename T, int MOpt>
inline Eigen::Matrix<T, 3, 1> skew(const Eigen::Matrix<T, 3, 3, MOpt>& matrix)
{
	Eigen::Matrix<T, 3, 3, MOpt> skewSymmetricPart = (matrix - matrix.transpose()) / 2.0;
	return Eigen::Matrix<T, 3, 1>(skewSymmetricPart(2, 1), skewSymmetricPart(0, 2), skewSymmetricPart(1, 0));
}

/// Get the angle (in radians) and axis corresponding to a rotation matrix.
/// \tparam T the numeric data type used for arguments and the return value.  Can usually be deduced.
/// \tparam MOpt the option flags (alignment etc.) used for the rotation matrix argument.  Can be deduced.
/// \tparam VOpt the option flags (alignment etc.) used for the axis vector argument.  Can be deduced.
/// \param matrix the rotation matrix to inspect.
/// \param [out] angle the angle of the rotation, in radians.
/// \param [out] axis the axis of the rotation.
template <typename T, int MOpt, int VOpt>
inline void computeAngleAndAxis(const Eigen::Matrix<T, 3, 3, MOpt>& matrix,
								T* angle, Eigen::Matrix<T, 3, 1, VOpt>* axis)
{
	Eigen::AngleAxis<T> angleAxis(matrix);
	*angle = angleAxis.angle();
	*axis = angleAxis.axis();
}

/// Get the angle corresponding to a quaternion's rotation, in radians.
/// If you don't care about the rotation axis, this is more efficient than computeAngleAndAxis().
/// \tparam T the numeric data type used for arguments and the return value.  Can usually be deduced.
/// \tparam MOpt the option flags (alignment etc.) used for the rotation matrix argument.  Can be deduced.
/// \param matrix the rotation matrix to inspect.
/// \returns the angle of the rotation, in radians.
template <typename T, int MOpt>
inline T computeAngle(const Eigen::Matrix<T, 3, 3, MOpt>& matrix)
{
	// TODO(bert): there has to be a more efficient way...
	Eigen::AngleAxis<T> angleAxis(matrix);
	return angleAxis.angle();
}

/// Helper method to add a sub-matrix into a matrix, for the sake of clarity
/// \tparam Matrix The matrix type
/// \tparam SubMatrix The sub-matrix type
/// \param subMatrix The sub-matrix
/// \param blockIdRow, blockIdCol The block indices in matrix
/// \param blockSizeRow, blockSizeCol The block size (size of the sub-matrix)
/// \param[out] matrix The matrix to add the sub-matrix into
template <class Matrix, class SubMatrix>
void addSubMatrix(const SubMatrix& subMatrix, size_t blockIdRow, size_t blockIdCol,
				  size_t blockSizeRow, size_t blockSizeCol, Matrix* matrix)
{
	matrix->block(blockSizeRow * blockIdRow, blockSizeCol * blockIdCol, blockSizeRow, blockSizeCol) += subMatrix;
}

/// Helper method to add a sub-matrix made of squared-blocks into a matrix, for the sake of clarity
/// \tparam Matrix The matrix type
/// \tparam SubMatrix The sub-matrix type
/// \param subMatrix The sub-matrix (containing all the squared-blocks)
/// \param blockIds Vector of block indices (for accessing matrix) corresponding to the blocks in sub-matrix
/// \param blockSize The blocks size
/// \param[out] matrix The matrix to add the sub-matrix blocks into
template <class Matrix, class SubMatrix>
void addSubMatrix(const SubMatrix& subMatrix, const std::vector<size_t> blockIds, size_t blockSize, Matrix* matrix)
{
	const size_t numBlocks = blockIds.size();

	for (size_t block0 = 0; block0 < numBlocks; block0++)
	{
		size_t blockId0 = blockIds[block0];

		for (size_t block1 = 0; block1 < numBlocks; block1++)
		{
			size_t blockId1 = blockIds[block1];

			matrix->block(blockSize * blockId0, blockSize * blockId1, blockSize, blockSize) +=
				subMatrix.block(blockSize * block0, blockSize * block1, blockSize, blockSize);
		}
	}
}

/// Helper method to set a sub-matrix into a matrix, for the sake of clarity
/// \tparam Matrix The matrix type
/// \tparam SubMatrix The sub-matrix type
/// \param subMatrix The sub-matrix
/// \param blockIdRow, blockIdCol The block indices for row and column in matrix
/// \param blockSizeRow, blockSizeCol The size of the sub-matrix
/// \param[out] matrix The matrix to set the sub-matrix into
template <class Matrix, class SubMatrix>
void setSubMatrix(const SubMatrix& subMatrix, size_t blockIdRow, size_t blockIdCol,
				  size_t blockSizeRow, size_t blockSizeCol, Matrix* matrix)
{
	matrix->block(blockSizeRow * blockIdRow, blockSizeCol * blockIdCol,
				  blockSizeRow, blockSizeCol) = subMatrix;
}

/// Helper method to access a sub-matrix from a matrix, for the sake of clarity
/// \tparam Matrix The matrix type to get the sub-matrix from
/// \param matrix The matrix to get the sub-matrix from
/// \param blockIdRow, blockIdCol The block indices
/// \param blockSizeRow, blockSizeCol The block size
/// \return The requested sub-matrix
/// \note Disable cpplint warnings for use of non-const reference
/// \note Eigen has a specific type for Block that we want to return with read/write access
/// \note therefore the Matrix from which the Block is built from must not be const
template <class Matrix>
Eigen::Block<Matrix> getSubMatrix(Matrix& matrix, size_t blockIdRow, size_t blockIdCol,  // NOLINT
								  size_t blockSizeRow, size_t blockSizeCol)
{
	return matrix.block(blockSizeRow * blockIdRow, blockSizeCol * blockIdCol, blockSizeRow, blockSizeCol);
}

/// Helper method to zero a row of a matrix.
/// \tparam Matrix The matrix type
/// \param row The row to set to zero
/// \param[in,out] matrix The matrix to set the zero row on.
template <class Derived>
void zeroRow(size_t row, Eigen::DenseBase<Derived>* matrix)
{
	matrix->middleRows(row, 1).setZero();
}

/// Helper method to zero a column of a matrix.
/// \tparam Matrix The matrix type
/// \param column The column to set to zero
/// \param[in,out] matrix The matrix to set the zero column on.
template <class Derived>
void zeroColumn(size_t column, Eigen::DenseBase<Derived>* matrix)
{
	(*matrix).middleCols(column, 1).setZero();
}

};  // namespace Math
};  // namespace SurgSim

#endif  // SURGSIM_MATH_MATRIX_H