This file is indexed.

/usr/include/SurgSim/Math/LinearSolveAndInverse-inl.h is in libopensurgsim-dev 0.7.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
// This file is a part of the OpenSurgSim project.
// Copyright 2012-2013, SimQuest Solutions Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef SURGSIM_MATH_LINEARSOLVEANDINVERSE_INL_H
#define SURGSIM_MATH_LINEARSOLVEANDINVERSE_INL_H

#include "SurgSim/Framework/Assert.h"

namespace SurgSim
{

namespace Math
{

template <size_t BlockSize>
const Eigen::Block<const Matrix, BlockSize, BlockSize>
	LinearSolveAndInverseTriDiagonalBlockMatrix<BlockSize>::minusAi(const SurgSim::Math::Matrix& A, size_t i) const
{
	return A.block<BlockSize, BlockSize>(BlockSize * i, BlockSize * (i - 1));
}

template <size_t BlockSize>
const Eigen::Block<const Matrix, BlockSize, BlockSize>
	LinearSolveAndInverseTriDiagonalBlockMatrix<BlockSize>::Bi(const SurgSim::Math::Matrix& A, size_t i) const
{
	return A.block<BlockSize, BlockSize>(BlockSize * i, BlockSize * i);
}

template <size_t BlockSize>
const Eigen::Block<const Matrix, BlockSize, BlockSize>
	LinearSolveAndInverseTriDiagonalBlockMatrix<BlockSize>::minusCi(const SurgSim::Math::Matrix& A, size_t i) const
{
	return A.block<BlockSize, BlockSize>(BlockSize * i, BlockSize * (i + 1));
}

template <size_t BlockSize>
void LinearSolveAndInverseTriDiagonalBlockMatrix<BlockSize>::inverseTriDiagonalBlock(const SurgSim::Math::Matrix& A,
																					 SurgSim::Math::Matrix* inverse,
																					 bool isSymmetric)
{
	SURGSIM_ASSERT(inverse != nullptr) << "Null inverse matrix pointer";

	SURGSIM_ASSERT(A.cols() == A.rows()) <<
		"Cannot inverse a non square tri-diagonal block matrix ("<< A.rows() <<" x "<< A.cols() <<")";

	const size_t size = A.rows();
	const size_t numBlocks = size / BlockSize;

	SURGSIM_ASSERT(numBlocks * BlockSize == size) <<
		"Bad tri-diagonal block matrix structure, size = " << size << " block size = " << BlockSize <<
		" and the number of blocks are " << numBlocks;

	// If the matrix size is less or equal to 4 (Eigen inverse use co-factor for those), or the matrix is
	// composed of an unique block, simply call the normal Eigen inverse method.
	if (size <= 4 || numBlocks == static_cast<size_t>(1))
	{
		*inverse = A.inverse();
		return;
	}

	if (inverse->rows() < 0 || static_cast<size_t>(inverse->rows()) != size
		|| inverse->cols() < 0 || static_cast<size_t>(inverse->cols()) != size)
	{
		inverse->resize(size, size);
	}

	m_Bi_AiDiminus1_inv.resize(numBlocks);
	m_Di.resize(numBlocks - 1);
	m_Ei.resize(numBlocks);	// Should be of size m_numBlocks - 1 too, but index 0 is undefined and we
							// decided to not change the indexing to not introduce any confusion

	// Bi_AiDiminus1_inv[0] = (B0)^-1
	// D                [0] = (B0)^-1.C0
	m_Bi_AiDiminus1_inv[0] = Bi(A, 0).inverse();
	m_Di[0] = m_Bi_AiDiminus1_inv[0] * (-minusCi(A, 0));
	// Bi_AiDiminus1_inv[i] = (Bi - Ai.D[i-1])^-1
	// Di               [i] = (Bi - Ai.D[i-1])^-1 . Ci
	for(size_t i = 1; i < numBlocks - 1; ++i)
	{
		m_Bi_AiDiminus1_inv[i] = (Bi(A, i) - (-minusAi(A, i)) * m_Di[i - 1]).inverse();
		m_Di[i] = m_Bi_AiDiminus1_inv[i] * (-minusCi(A, i));
	}
	// Bi_AiDiminus1_inv[nbBlock-1] = (B(nbBlock-1) - A(nbBlock-1).D(nbBlock-2))^-1
	// D                [nbBlock-1] = UNDEFINED because C(nbBlock-1) does not exist
	m_Bi_AiDiminus1_inv[numBlocks - 1] =
		(Bi(A, numBlocks - 1) - (-minusAi(A, numBlocks - 1)) * m_Di[numBlocks - 2]).inverse();

	// E[nbBlock-1] = (B(nbBlock-1))^-1 . A(nbBlock-1)
	// Ei           = (Bi - Ci.E(i+1))^-1 . Ai
	// E0           = UNDEFINED because A0 does not exist
	m_Ei[numBlocks - 1] = Bi(A, numBlocks - 1).inverse() * (-minusAi(A, numBlocks - 1));
	for(size_t i = numBlocks - 2; i > 0; --i)
	{
		m_Ei[i] = (Bi(A, i) - (-minusCi(A, i)) * m_Ei[i + 1]).inverse() * (-minusAi(A, i));
	}

	// Inverse diagonal blocks:
	// inv(i,i) = (I - Di.E(i+1))^-1.Bi_AiDiminus1_inv[i]
	for(size_t i = 0; i < numBlocks - 1; ++i)
	{
		inverse->block<BlockSize, BlockSize>(BlockSize * i, BlockSize * i) =
			(Block::Identity() - m_Di[i] * m_Ei[i + 1]).inverse() * m_Bi_AiDiminus1_inv[i];
	}
	// inv(nbBlock-1,nbBlock-1) = Bi_AiDiminus1_inv[nbBlock-1]
	inverse->block<BlockSize, BlockSize>(BlockSize * (numBlocks - 1), BlockSize * (numBlocks - 1)) =
		m_Bi_AiDiminus1_inv[numBlocks - 1];

	// Inverse off-diagonal blocks:
	// inv(i,j) = Di.inv(i+1,j) for i<j
	// inv(i,j) = Ei.inv(i-1,j) for i>j
	if (isSymmetric)
	{
		for(size_t j = 1; j < numBlocks; ++j)
		{
			for(size_t i = j; i > 0; --i)
			{
				inverse->block<BlockSize, BlockSize>(BlockSize * (i - 1), BlockSize * j) =
					m_Di[i - 1] * inverse->block<BlockSize, BlockSize>(BlockSize * i, BlockSize * j);
				inverse->block<BlockSize, BlockSize>(BlockSize * j, BlockSize * (i - 1)) =
					inverse->block<BlockSize, BlockSize>(BlockSize * (i - 1), BlockSize * j).transpose();
			}
		}
	}
	else
	{
		for(int j = 0; j < static_cast<int>(numBlocks); ++j)
		{
			for(int i = j - 1; i >= 0; --i)
			{
				inverse->block<BlockSize, BlockSize>(BlockSize * i, BlockSize * j) =
					m_Di[i] * inverse->block<BlockSize, BlockSize>(BlockSize * (i + 1), BlockSize * j);
			}
			for(int i = j + 1; i < static_cast<int>(numBlocks); ++i)
			{
				inverse->block<BlockSize, BlockSize>(BlockSize * i, BlockSize * j) =
					m_Ei[i] * inverse->block<BlockSize, BlockSize>(BlockSize * (i - 1), BlockSize * j);
			}
		}
	}
}

template <size_t BlockSize>
void LinearSolveAndInverseTriDiagonalBlockMatrix<BlockSize>::setMatrix(const Matrix& matrix)
{
	inverseTriDiagonalBlock(matrix, &m_inverse);
}

template <size_t BlockSize>
Vector LinearSolveAndInverseTriDiagonalBlockMatrix<BlockSize>::solve(const Vector& b)
{
	return m_inverse * b;
}

template <size_t BlockSize>
Matrix LinearSolveAndInverseTriDiagonalBlockMatrix<BlockSize>::getInverse()
{
	return m_inverse;
}

template <size_t BlockSize>
void LinearSolveAndInverseSymmetricTriDiagonalBlockMatrix<BlockSize>::setMatrix(const Matrix& matrix)
{
	inverseTriDiagonalBlock(matrix, &m_inverse, true);
}

};  // namespace Math

};  // namespace SurgSim

#endif // SURGSIM_MATH_LINEARSOLVEANDINVERSE_INL_H