/usr/include/OpenImageIO/thread.h is in libopenimageio-dev 1.6.17~dfsg0-1+b2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 | /*
Copyright 2008 Larry Gritz and the other authors and contributors.
All Rights Reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the software's owners nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
(This is the Modified BSD License)
*/
/////////////////////////////////////////////////////////////////////////
/// @file thread.h
///
/// @brief Wrappers and utilities for multithreading.
/////////////////////////////////////////////////////////////////////////
#ifndef OPENIMAGEIO_THREAD_H
#define OPENIMAGEIO_THREAD_H
#include <vector>
#include "oiioversion.h"
#include "platform.h"
#if OIIO_CPLUSPLUS_VERSION >= 11
# include <thread>
# include <mutex>
# include <atomic>
# define not_yet_OIIO_USE_STDATOMIC 1
#else /* prior to C++11... */
// Use Boost mutexes & guards when C++11 is not available
# include <boost/version.hpp>
# if defined(__GNUC__) && (BOOST_VERSION == 104500)
// gcc reports errors inside some of the boost headers with boost 1.45
// See: https://svn.boost.org/trac/boost/ticket/4818
# pragma GCC diagnostic ignored "-Wunused-variable"
# endif
# include <boost/thread.hpp>
# if defined(__GNUC__) && (BOOST_VERSION == 104500)
// can't restore via push/pop in all versions of gcc (warning push/pop implemented for 4.6+ only)
# pragma GCC diagnostic error "-Wunused-variable"
# endif
#endif
#if defined(_MSC_VER)
// N.B. including platform.h also included <windows.h>
# pragma intrinsic (_InterlockedExchangeAdd)
# pragma intrinsic (_InterlockedCompareExchange)
# pragma intrinsic (_InterlockedCompareExchange64)
# if defined(_WIN64)
# pragma intrinsic(_InterlockedExchangeAdd64)
# endif
// InterlockedExchangeAdd64 & InterlockedExchange64 are not available for XP
# if defined(_WIN32_WINNT) && _WIN32_WINNT <= 0x0501
inline long long
InterlockedExchangeAdd64 (volatile long long *Addend, long long Value)
{
long long Old;
do {
Old = *Addend;
} while (_InterlockedCompareExchange64(Addend, Old + Value, Old) != Old);
return Old;
}
inline long long
InterlockedExchange64 (volatile long long *Target, long long Value)
{
long long Old;
do {
Old = *Target;
} while (_InterlockedCompareExchange64(Target, Value, Old) != Old);
return Old;
}
# endif
#endif
#if defined(__GNUC__) && (defined(_GLIBCXX_ATOMIC_BUILTINS) || (__GNUC__ * 100 + __GNUC_MINOR__ >= 401))
# define USE_GCC_ATOMICS
# if !defined(__clang__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 408)
# define OIIO_USE_GCC_NEW_ATOMICS
# endif
#endif
// OIIO_THREAD_ALLOW_DCLP, if set to 0, prevents us from using a dodgy
// "double checked lock pattern" (DCLP). We are very careful to construct
// it safely and correctly, and these uses improve thread performance for
// us. But it confuses Thread Sanitizer, so this switch allows you to turn
// it off. Also set to 0 if you don't believe that we are correct in
// allowing this construct on all platforms.
#ifndef OIIO_THREAD_ALLOW_DCLP
#define OIIO_THREAD_ALLOW_DCLP 1
#endif
// Some helpful links:
//
// Descriptions of the "new" gcc atomic intrinsics:
// https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html
// Old gcc atomic intrinsics:
// https://gcc.gnu.org/onlinedocs/gcc-4.4.2/gcc/Atomic-Builtins.html
// C++11 and beyond std::atomic:
// http://en.cppreference.com/w/cpp/atomic
OIIO_NAMESPACE_BEGIN
/// Null mutex that can be substituted for a real one to test how much
/// overhead is associated with a particular mutex.
class null_mutex {
public:
null_mutex () { }
~null_mutex () { }
void lock () { }
void unlock () { }
void lock_shared () { }
void unlock_shared () { }
bool try_lock () { return true; }
};
/// Null lock that can be substituted for a real one to test how much
/// overhead is associated with a particular lock.
template<typename T>
class null_lock {
public:
null_lock (T &m) { }
};
#ifdef NOTHREADS
// Definitions that we use for debugging to turn off all mutexes, locks,
// and atomics in order to test the performance hit of our thread safety.
typedef null_mutex mutex;
typedef null_mutex recursive_mutex;
typedef null_lock<mutex> lock_guard;
typedef null_lock<recursive_mutex> recursive_lock_guard;
#elif OIIO_CPLUSPLUS_VERSION >= 11
typedef std::mutex mutex;
typedef std::recursive_mutex recursive_mutex;
typedef std::lock_guard< mutex > lock_guard;
typedef std::lock_guard< recursive_mutex > recursive_lock_guard;
typedef std::thread thread;
#else
// Fairly modern Boost has all the mutex and lock types we need.
typedef boost::mutex mutex;
typedef boost::recursive_mutex recursive_mutex;
typedef boost::lock_guard< mutex > lock_guard;
typedef boost::lock_guard< recursive_mutex > recursive_lock_guard;
typedef boost::thread thread;
#endif
#if OIIO_USE_STDATOMIC
using std::memory_order;
#else
enum memory_order {
#if defined(OIIO_USE_GCC_NEW_ATOMICS)
memory_order_relaxed = __ATOMIC_RELAXED,
memory_order_consume = __ATOMIC_CONSUME,
memory_order_acquire = __ATOMIC_ACQUIRE,
memory_order_release = __ATOMIC_RELEASE,
memory_order_acq_rel = __ATOMIC_ACQ_REL,
memory_order_seq_cst = __ATOMIC_SEQ_CST
#else
memory_order_relaxed,
memory_order_consume,
memory_order_acquire,
memory_order_release,
memory_order_acq_rel,
memory_order_seq_cst
#endif
};
#endif
/// Atomic version of: r = *at, *at += x, return r
/// For each of several architectures.
inline int
atomic_exchange_and_add (volatile int *at, int x,
memory_order order = memory_order_seq_cst)
{
#ifdef NOTHREADS
int r = *at; *at += x; return r;
#elif defined(OIIO_USE_GCC_NEW_ATOMICS)
return __atomic_fetch_add (at, x, order);
#elif defined(USE_GCC_ATOMICS)
return __sync_fetch_and_add ((int *)at, x);
#elif defined(_MSC_VER)
// Windows
return _InterlockedExchangeAdd ((volatile LONG *)at, x);
#else
# error No atomics on this platform.
#endif
}
inline long long
atomic_exchange_and_add (volatile long long *at, long long x,
memory_order order = memory_order_seq_cst)
{
#ifdef NOTHREADS
long long r = *at; *at += x; return r;
#elif defined(OIIO_USE_GCC_NEW_ATOMICS)
return __atomic_fetch_add (at, x, order);
#elif defined(USE_GCC_ATOMICS)
return __sync_fetch_and_add (at, x);
#elif defined(_MSC_VER)
// Windows
# if defined(_WIN64)
return _InterlockedExchangeAdd64 ((volatile LONGLONG *)at, x);
# else
return InterlockedExchangeAdd64 ((volatile LONGLONG *)at, x);
# endif
#else
# error No atomics on this platform.
#endif
}
/// Atomic version of: r = *at, *at &= x, return r
/// For each of several architectures.
inline int
atomic_exchange_and_and (volatile int *at, int x,
memory_order order = memory_order_seq_cst)
{
#ifdef NOTHREADS
int r = *at; *at &= x; return r;
#elif defined(OIIO_USE_GCC_NEW_ATOMICS)
return __atomic_fetch_and (at, x, order);
#elif defined(USE_GCC_ATOMICS)
return __sync_fetch_and_and ((int *)at, x);
#elif defined(_MSC_VER)
// Windows
return _InterlockedAnd ((volatile LONG *)at, x);
#else
# error No atomics on this platform.
#endif
}
inline long long
atomic_exchange_and_and (volatile long long *at, long long x,
memory_order order = memory_order_seq_cst)
{
#ifdef NOTHREADS
long long r = *at; *at &= x; return r;
#elif defined(OIIO_USE_GCC_NEW_ATOMICS)
return __atomic_fetch_and (at, x, order);
#elif defined(USE_GCC_ATOMICS)
return __sync_fetch_and_and (at, x);
#elif defined(_MSC_VER)
// Windows
# if defined(_WIN64)
return _InterlockedAnd64 ((volatile LONGLONG *)at, x);
# else
return InterlockedAnd64 ((volatile LONGLONG *)at, x);
# endif
#else
# error No atomics on this platform.
#endif
}
/// Atomic version of: r = *at, *at |= x, return r
/// For each of several architectures.
inline int
atomic_exchange_and_or (volatile int *at, int x,
memory_order order = memory_order_seq_cst)
{
#ifdef NOTHREADS
int r = *at; *at |= x; return r;
#elif defined(OIIO_USE_GCC_NEW_ATOMICS)
return __atomic_fetch_or (at, x, order);
#elif defined(USE_GCC_ATOMICS)
return __sync_fetch_and_or ((int *)at, x);
#elif defined(_MSC_VER)
// Windows
return _InterlockedOr ((volatile LONG *)at, x);
#else
# error No atomics on this platform.
#endif
}
inline long long
atomic_exchange_and_or (volatile long long *at, long long x,
memory_order order = memory_order_seq_cst)
{
#ifdef NOTHREADS
long long r = *at; *at |= x; return r;
#elif defined(OIIO_USE_GCC_NEW_ATOMICS)
return __atomic_fetch_or (at, x, order);
#elif defined(USE_GCC_ATOMICS)
return __sync_fetch_and_or (at, x);
#elif defined(_MSC_VER)
// Windows
# if defined(_WIN64)
return _InterlockedOr64 ((volatile LONGLONG *)at, x);
# else
return InterlockedOr64 ((volatile LONGLONG *)at, x);
# endif
#else
# error No atomics on this platform.
#endif
}
/// Atomic version of: r = *at, *at ^= x, return r
/// For each of several architectures.
inline int
atomic_exchange_and_xor (volatile int *at, int x,
memory_order order = memory_order_seq_cst)
{
#ifdef NOTHREADS
int r = *at; *at ^= x; return r;
#elif defined(OIIO_USE_GCC_NEW_ATOMICS)
return __atomic_fetch_xor (at, x, order);
#elif defined(USE_GCC_ATOMICS)
return __sync_fetch_and_xor ((int *)at, x);
#elif defined(_MSC_VER)
// Windows
return _InterlockedXor ((volatile LONG *)at, x);
#else
# error No atomics on this platform.
#endif
}
inline long long
atomic_exchange_and_xor (volatile long long *at, long long x,
memory_order order = memory_order_seq_cst)
{
#ifdef NOTHREADS
long long r = *at; *at ^= x; return r;
#elif defined(OIIO_USE_GCC_NEW_ATOMICS)
return __atomic_fetch_xor (at, x, order);
#elif defined(USE_GCC_ATOMICS)
return __sync_fetch_and_xor (at, x);
#elif defined(_MSC_VER)
// Windows
# if defined(_WIN64)
return _InterlockedXor64 ((volatile LONGLONG *)at, x);
# else
return InterlockedXor64 ((volatile LONGLONG *)at, x);
# endif
#else
# error No atomics on this platform.
#endif
}
/// Atomic version of:
/// if (*at == compareval) {
/// *at = newval; return true;
/// } else {
/// return false;
/// }
inline bool
atomic_compare_and_exchange (volatile int *at, int compareval, int newval,
bool weak = false,
memory_order success = memory_order_seq_cst,
memory_order failure = memory_order_seq_cst)
{
#ifdef NOTHREADS
if (*at == compareval) {
*at = newval; return true;
} else {
return false;
}
#elif defined(OIIO_USE_GCC_NEW_ATOMICS)
return __atomic_compare_exchange_n (at, &compareval, newval, weak,
success, failure);
#elif defined(USE_GCC_ATOMICS)
return __sync_bool_compare_and_swap (at, compareval, newval);
#elif defined(_MSC_VER)
return (_InterlockedCompareExchange ((volatile LONG *)at, newval, compareval) == compareval);
#else
# error No atomics on this platform.
#endif
}
inline bool
atomic_compare_and_exchange (volatile long long *at, long long compareval, long long newval,
bool weak = false,
memory_order success = memory_order_seq_cst,
memory_order failure = memory_order_seq_cst)
{
#ifdef NOTHREADS
if (*at == compareval) {
*at = newval; return true;
} else {
return false;
}
#elif defined(OIIO_USE_GCC_NEW_ATOMICS)
return __atomic_compare_exchange_n (at, &compareval, newval, weak,
success, failure);
#elif defined(USE_GCC_ATOMICS)
return __sync_bool_compare_and_swap (at, compareval, newval);
#elif defined(_MSC_VER)
return (_InterlockedCompareExchange64 ((volatile LONGLONG *)at, newval, compareval) == compareval);
#else
# error No atomics on this platform.
#endif
}
/// Atomic version of: r = *at, *at = x, return r
/// For each of several architectures.
inline int
atomic_exchange (volatile int *at, int x,
memory_order order = memory_order_seq_cst)
{
#ifdef NOTHREADS
int r = *at; *at = x; return r;
#elif defined(OIIO_USE_GCC_NEW_ATOMICS)
return __atomic_exchange_n (at, x, order);
#elif defined(USE_GCC_ATOMICS)
// No __sync version of atomic exchange! Do it the hard way:
while (1) {
int old = *at;
if (atomic_compare_and_exchange (at, old, x))
return old;
}
return 0; // can never happen
#elif defined(_MSC_VER)
// Windows
return _InterlockedExchange ((volatile LONG *)at, x);
#else
# error No atomics on this platform.
#endif
}
inline long long
atomic_exchange (volatile long long *at, long long x,
memory_order order = memory_order_seq_cst)
{
#ifdef NOTHREADS
long long r = *at; *at = x; return r;
#elif defined(OIIO_USE_GCC_NEW_ATOMICS)
return __atomic_exchange_n (at, x, order);
#elif defined(USE_GCC_ATOMICS)
// No __sync version of atomic exchange! Do it the hard way:
while (1) {
long long old = *at;
if (atomic_compare_and_exchange (at, old, x))
return old;
}
return 0; // can never happen
#elif defined(_MSC_VER)
// Windows
# if defined(_WIN64)
return _InterlockedExchange64 ((volatile LONGLONG *)at, x);
# else
return InterlockedExchange64 ((volatile LONGLONG *)at, x);
# endif
#else
# error No atomics on this platform.
#endif
}
/// Memory fence / synchronization barrier
OIIO_FORCEINLINE void
atomic_thread_fence (memory_order order = memory_order_seq_cst)
{
#ifdef NOTHREADS
// nothing
#elif OIIO_USE_STDATOMIC
std::__atomic_thread_fence (order);
#elif defined(OIIO_USE_GCC_NEW_ATOMICS)
__atomic_thread_fence (order);
#elif defined(USE_GCC_ATOMICS)
__sync_synchronize ();
#elif defined(__GNUC__) && (defined(__x86_64__) || defined(__i386__))
__asm__ __volatile__ ("":::"memory");
#elif defined(_MSC_VER)
MemoryBarrier ();
#else
# error No atomics on this platform.
#endif
}
/// Yield the processor for the rest of the timeslice.
///
inline void
yield ()
{
#if defined(__GNUC__)
sched_yield ();
#elif defined(_MSC_VER)
SwitchToThread ();
#else
# error No yield on this platform.
#endif
}
// Slight pause
inline void
pause (int delay)
{
#if defined(__GNUC__) && (defined(__x86_64__) || defined(__i386__))
for (int i = 0; i < delay; ++i)
__asm__ __volatile__("pause;");
#elif defined(__GNUC__) && (defined(__arm__) || defined(__s390__))
for (int i = 0; i < delay; ++i)
__asm__ __volatile__("NOP;");
#elif defined(_MSC_VER)
for (int i = 0; i < delay; ++i) {
#if defined (_WIN64)
YieldProcessor();
#else
_asm pause
#endif /* _WIN64 */
}
#else
// No pause on this platform, just punt
for (int i = 0; i < delay; ++i) ;
#endif
}
// Helper class to deliver ever longer pauses until we yield our timeslice.
class atomic_backoff {
public:
atomic_backoff () : m_count(1) { }
void operator() () {
if (m_count <= 16) {
pause (m_count);
m_count *= 2;
} else {
yield();
}
}
private:
int m_count;
};
/// Atomic integer. Increment, decrement, add, and subtract in a
/// totally thread-safe manner.
template<class T>
class atomic {
public:
/// Construct with initial value.
///
atomic (T val=0) : m_val(val) { }
~atomic () { }
/// Retrieve value
///
T load (memory_order order = memory_order_seq_cst) const {
return atomic_exchange_and_add (&m_val, 0, order);
}
/// Retrieve value
///
T operator() () const { return load(); }
/// Retrieve value
///
operator T() const { return load(); }
/// Fast retrieval of value, no interchange, don't care about memory
/// fences. Use with extreme caution!
T fast_value () const { return m_val; }
/// Assign new value, atomically.
void store (T x, memory_order order = memory_order_seq_cst) {
atomic_exchange (&m_val, x, order);
}
/// Atomic exchange
T exchange (T x, memory_order order = memory_order_seq_cst) {
return atomic_exchange (&m_val, x, order);
}
/// Atomic fetch-and-add: add x and return the old value.
T fetch_add (T x, memory_order order = memory_order_seq_cst) {
return atomic_exchange_and_add (&m_val, x, order);
}
/// Atomic fetch-and-subtract: subtract x and return the old value.
T fetch_sub (T x, memory_order order = memory_order_seq_cst) {
return atomic_exchange_and_add (&m_val, -x, order);
}
/// Atomic fetch-and-and: bitwise and with x and return the old value.
T fetch_and (T x, memory_order order = memory_order_seq_cst) {
return atomic_exchange_and_and (&m_val, x, order);
}
/// Atomic fetch-and-or: bitwise or with x and return the old value.
T fetch_or (T x, memory_order order = memory_order_seq_cst) {
return atomic_exchange_and_or (&m_val, x, order);
}
/// Atomic fetch-and-xor: bitwise xor with x and return the old value.
T fetch_xor (T x, memory_order order = memory_order_seq_cst) {
return atomic_exchange_and_xor (&m_val, x, order);
}
/// Assign new value.
///
T operator= (T x) { store(x); return x; }
/// Pre-increment: ++foo
///
T operator++ () { return fetch_add(1) + 1; }
/// Post-increment: foo++
///
T operator++ (int) { return fetch_add(1); }
/// Pre-decrement: --foo
///
T operator-- () { return fetch_sub(1) - 1; }
/// Post-decrement: foo--
///
T operator-- (int) { return fetch_sub(1); }
/// Add to the value, return the new result
///
T operator+= (T x) { return fetch_add(x) + x; }
/// Subtract from the value, return the new result
///
T operator-= (T x) { return fetch_sub(x) - x; }
/// Logical and, return the new result
///
T operator&= (T x) { return fetch_and(x) & x; }
/// Logical or, return the new result
///
T operator|= (T x) { return fetch_or(x) | x; }
/// Logical xor, return the new result
///
T operator^= (T x) { return fetch_xor(x) ^ x; }
bool bool_compare_and_swap (T compareval, T newval) {
return atomic_compare_and_exchange (&m_val, compareval, newval);
}
T operator= (const atomic &x) {
T r = x();
*this = r;
return r;
}
private:
#ifdef __arm__
OIIO_ALIGN(8)
#endif
volatile mutable T m_val;
// Disallow copy construction by making private and unimplemented.
atomic (atomic const &);
};
#ifdef NOTHREADS
typedef int atomic_int;
typedef long long atomic_ll;
#else
typedef atomic<int> atomic_int;
typedef atomic<long long> atomic_ll;
#endif
#ifdef NOTHREADS
typedef null_mutex spin_mutex;
typedef null_lock<spin_mutex> spin_lock;
#else
// Define our own spin locks.
/// A spin_mutex is semantically equivalent to a regular mutex, except
/// for the following:
/// - A spin_mutex is just 4 bytes, whereas a regular mutex is quite
/// large (44 bytes for pthread).
/// - A spin_mutex is extremely fast to lock and unlock, whereas a regular
/// mutex is surprisingly expensive just to acquire a lock.
/// - A spin_mutex takes CPU while it waits, so this can be very
/// wasteful compared to a regular mutex that blocks (gives up its
/// CPU slices until it acquires the lock).
///
/// The bottom line is that mutex is the usual choice, but in cases where
/// you need to acquire locks very frequently, but only need to hold the
/// lock for a very short period of time, you may save runtime by using
/// a spin_mutex, even though it's non-blocking.
///
/// N.B. A spin_mutex is only the size of an int. To avoid "false
/// sharing", be careful not to put two spin_mutex objects on the same
/// cache line (within 128 bytes of each other), or the two mutexes may
/// effectively (and wastefully) lock against each other.
///
class spin_mutex {
public:
/// Default constructor -- initialize to unlocked.
///
spin_mutex (void) { m_locked = 0; }
~spin_mutex (void) { }
/// Copy constructor -- initialize to unlocked.
///
spin_mutex (const spin_mutex &) { m_locked = 0; }
/// Assignment does not do anything, since lockedness should not
/// transfer.
const spin_mutex& operator= (const spin_mutex&) { return *this; }
/// Acquire the lock, spin until we have it.
///
void lock () {
// To avoid spinning too tightly, we use the atomic_backoff to
// provide increasingly longer pauses, and if the lock is under
// lots of contention, eventually yield the timeslice.
atomic_backoff backoff;
// Try to get ownership of the lock. Though experimentation, we
// found that OIIO_UNLIKELY makes this just a bit faster on
// gcc x86/x86_64 systems.
while (! OIIO_UNLIKELY(try_lock())) {
#if OIIO_THREAD_ALLOW_DCLP
// The full try_lock() involves a compare_and_swap, which
// writes memory, and that will lock the bus. But a normal
// read of m_locked will let us spin until the value
// changes, without locking the bus. So it's faster to
// check in this manner until the mutex appears to be free.
// HOWEVER... Thread Sanitizer things this is an instance of
// an unsafe "double checked lock pattern" (DCLP) and flags it
// as an error. I think it's a false negative, because the
// outer loop is still an atomic check, the inner non-atomic
// loop only serves to delay, and can't lead to a true data
// race. But we provide this build-time switch to, at least,
// give a way to use tsan for other checks.
do {
backoff();
} while (m_locked);
#else
backoff();
#endif
}
}
/// Release the lock that we hold.
///
void unlock () {
// Fastest way to do it is with a store with "release" semantics
#if defined(OIIO_USE_GCC_NEW_ATOMICS)
__atomic_clear (&m_locked, __ATOMIC_RELEASE);
#elif defined(USE_GCC_ATOMICS)
__sync_lock_release (&m_locked);
// Equivalent, x86 specific code:
// __asm__ __volatile__("": : :"memory");
// m_locked = 0;
#elif defined(_MSC_VER)
MemoryBarrier ();
m_locked = 0;
#else
// Otherwise, just assign zero to the atomic (but that's a full
// memory barrier).
*(atomic_int *)&m_locked = 0;
#endif
}
/// Try to acquire the lock. Return true if we have it, false if
/// somebody else is holding the lock.
bool try_lock () {
#if defined(OIIO_USE_GCC_NEW_ATOMICS)
return __atomic_test_and_set (&m_locked, __ATOMIC_ACQUIRE) == 0;
#elif defined(USE_GCC_ATOMICS)
// GCC gives us an intrinsic that is even better -- an atomic
// exchange with "acquire" barrier semantics.
return __sync_lock_test_and_set (&m_locked, 1) == 0;
#else
// Our compare_and_swap returns true if it swapped
return atomic_compare_and_exchange (&m_locked, 0, 1);
#endif
}
/// Helper class: scoped lock for a spin_mutex -- grabs the lock upon
/// construction, releases the lock when it exits scope.
class lock_guard {
public:
lock_guard (spin_mutex &fm) : m_fm(fm) { m_fm.lock(); }
~lock_guard () { m_fm.unlock(); }
private:
lock_guard(); // Do not implement
lock_guard(const lock_guard& other); // Do not implement
lock_guard& operator = (const lock_guard& other); // Do not implement
spin_mutex & m_fm;
};
private:
#if defined(OIIO_USE_GCC_NEW_ATOMICS)
// Using the gcc >= 4.8 new atomics, we can easily do a single byte flag
volatile char m_locked; ///< Atomic counter is zero if nobody holds the lock
#else
// Otherwise, fall back on it being an int
volatile int m_locked; ///< Atomic counter is zero if nobody holds the lock
#endif
};
typedef spin_mutex::lock_guard spin_lock;
#endif
/// Spinning reader/writer mutex. This is just like spin_mutex, except
/// that there are separate locking mechanisms for "writers" (exclusive
/// holders of the lock, presumably because they are modifying whatever
/// the lock is protecting) and "readers" (non-exclusive, non-modifying
/// tasks that may access the protectee simultaneously).
class spin_rw_mutex {
public:
/// Default constructor -- initialize to unlocked.
///
spin_rw_mutex (void) { m_readers = 0; }
~spin_rw_mutex (void) { }
/// Copy constructor -- initialize to unlocked.
///
spin_rw_mutex (const spin_rw_mutex &) { m_readers = 0; }
/// Assignment does not do anything, since lockedness should not
/// transfer.
const spin_rw_mutex& operator= (const spin_rw_mutex&) { return *this; }
/// Acquire the reader lock.
///
void read_lock () {
// Spin until there are no writers active
m_locked.lock();
// Register ourself as a reader
++m_readers;
// Release the lock, to let other readers work
m_locked.unlock();
}
/// Release the reader lock.
///
void read_unlock () {
--m_readers; // it's atomic, no need to lock to release
}
/// Acquire the writer lock.
///
void write_lock () {
// Make sure no new readers (or writers) can start
m_locked.lock();
// Spin until the last reader is done, at which point we will be
// the sole owners and nobody else (reader or writer) can acquire
// the resource until we release it.
#if OIIO_THREAD_ALLOW_DCLP
while (*(volatile int *)&m_readers > 0)
;
#else
while (m_readers > 0)
;
#endif
}
/// Release the writer lock.
///
void write_unlock () {
// Let other readers or writers get the lock
m_locked.unlock ();
}
/// Acquire an exclusive ("writer") lock.
void lock () { write_lock(); }
/// Release an exclusive ("writer") lock.
void unlock () { write_unlock(); }
/// Acquire a shared ("reader") lock.
void lock_shared () { read_lock(); }
/// Release a shared ("reader") lock.
void unlock_shared () { read_unlock(); }
/// Helper class: scoped read lock for a spin_rw_mutex -- grabs the
/// read lock upon construction, releases the lock when it exits scope.
class read_lock_guard {
public:
read_lock_guard (spin_rw_mutex &fm) : m_fm(fm) { m_fm.read_lock(); }
~read_lock_guard () { m_fm.read_unlock(); }
private:
read_lock_guard(); // Do not implement
read_lock_guard(const read_lock_guard& other); // Do not implement
read_lock_guard& operator = (const read_lock_guard& other); // Do not implement
spin_rw_mutex & m_fm;
};
/// Helper class: scoped write lock for a spin_rw_mutex -- grabs the
/// read lock upon construction, releases the lock when it exits scope.
class write_lock_guard {
public:
write_lock_guard (spin_rw_mutex &fm) : m_fm(fm) { m_fm.write_lock(); }
~write_lock_guard () { m_fm.write_unlock(); }
private:
write_lock_guard(); // Do not implement
write_lock_guard(const write_lock_guard& other); // Do not implement
write_lock_guard& operator = (const write_lock_guard& other); // Do not implement
spin_rw_mutex & m_fm;
};
private:
OIIO_CACHE_ALIGN
spin_mutex m_locked; // write lock
char pad1_[OIIO_CACHE_LINE_SIZE-sizeof(spin_mutex)];
OIIO_CACHE_ALIGN
atomic_int m_readers; // number of readers
char pad2_[OIIO_CACHE_LINE_SIZE-sizeof(atomic_int)];
};
typedef spin_rw_mutex::read_lock_guard spin_rw_read_lock;
typedef spin_rw_mutex::write_lock_guard spin_rw_write_lock;
/// Mutex pool. Sometimes, we have lots of objects that need to be
/// individually locked for thread safety, but two separate objects don't
/// need to lock against each other. If there are many more objects than
/// threads, it's wasteful for each object to contain its own mutex. So a
/// solution is to make a mutex_pool -- a collection of several mutexes.
/// Each object uses a hash to choose a consistent mutex for itself, but
/// which will be unlikely to be locked simultaneously by different object.
/// Semantically, it looks rather like an associative array of mutexes. We
/// also ensure that the mutexes are all on different cache lines, to ensure
/// that they don't exhibit false sharing. Try to choose Bins larger than
/// the expected number of threads that will be simultaneously locking
/// mutexes.
template<class Mutex, class Key, class Hash, size_t Bins=16>
class mutex_pool
{
public:
mutex_pool () { }
Mutex& operator[] (const Key &key) {
return m_mutex[m_hash(key) % Bins].m;
}
private:
// Helper type -- force cache line alignment. This should make an array
// of these also have padding so that each individual mutex is aligned
// to its own cache line, thus eliminating any "false sharing."
struct AlignedMutex {
OIIO_CACHE_ALIGN Mutex m;
};
AlignedMutex m_mutex[Bins];
Hash m_hash;
};
/// Simple thread group class. This is just as good as boost::thread_group,
/// for the limited functionality that we use.
class thread_group {
public:
thread_group () {}
~thread_group () {
for (size_t i = 0, e = m_threads.size(); i < e; ++i)
delete m_threads[i];
}
void add_thread (thread *t) {
if (t) {
lock_guard lock (m_mutex);
m_threads.push_back (t);
}
}
template<typename FUNC>
thread *create_thread (FUNC func) {
lock_guard lock (m_mutex);
thread *t = new thread (func);
m_threads.push_back (t);
return t;
}
void join_all () {
lock_guard lock (m_mutex);
for (size_t i = 0, e = m_threads.size(); i < e; ++i) {
if (m_threads[i]->joinable())
m_threads[i]->join();
}
}
size_t size () {
lock_guard lock (m_mutex);
return m_threads.size();
}
private:
mutex m_mutex;
std::vector<thread *> m_threads;
};
OIIO_NAMESPACE_END
#endif // OPENIMAGEIO_THREAD_H
|