This file is indexed.

/usr/include/opencv2/objdetect/objdetect.hpp is in libopencv-objdetect-dev 2.4.9.1+dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_OBJDETECT_HPP__
#define __OPENCV_OBJDETECT_HPP__

#include "opencv2/core/core.hpp"

#ifdef __cplusplus
#include <map>
#include <deque>

extern "C" {
#endif

/****************************************************************************************\
*                         Haar-like Object Detection functions                           *
\****************************************************************************************/

#define CV_HAAR_MAGIC_VAL    0x42500000
#define CV_TYPE_NAME_HAAR    "opencv-haar-classifier"

#define CV_IS_HAAR_CLASSIFIER( haar )                                                    \
    ((haar) != NULL &&                                                                   \
    (((const CvHaarClassifierCascade*)(haar))->flags & CV_MAGIC_MASK)==CV_HAAR_MAGIC_VAL)

#define CV_HAAR_FEATURE_MAX  3

typedef struct CvHaarFeature
{
    int tilted;
    struct
    {
        CvRect r;
        float weight;
    } rect[CV_HAAR_FEATURE_MAX];
} CvHaarFeature;

typedef struct CvHaarClassifier
{
    int count;
    CvHaarFeature* haar_feature;
    float* threshold;
    int* left;
    int* right;
    float* alpha;
} CvHaarClassifier;

typedef struct CvHaarStageClassifier
{
    int  count;
    float threshold;
    CvHaarClassifier* classifier;

    int next;
    int child;
    int parent;
} CvHaarStageClassifier;

typedef struct CvHidHaarClassifierCascade CvHidHaarClassifierCascade;

typedef struct CvHaarClassifierCascade
{
    int  flags;
    int  count;
    CvSize orig_window_size;
    CvSize real_window_size;
    double scale;
    CvHaarStageClassifier* stage_classifier;
    CvHidHaarClassifierCascade* hid_cascade;
} CvHaarClassifierCascade;

typedef struct CvAvgComp
{
    CvRect rect;
    int neighbors;
} CvAvgComp;

/* Loads haar classifier cascade from a directory.
   It is obsolete: convert your cascade to xml and use cvLoad instead */
CVAPI(CvHaarClassifierCascade*) cvLoadHaarClassifierCascade(
                    const char* directory, CvSize orig_window_size);

CVAPI(void) cvReleaseHaarClassifierCascade( CvHaarClassifierCascade** cascade );

#define CV_HAAR_DO_CANNY_PRUNING    1
#define CV_HAAR_SCALE_IMAGE         2
#define CV_HAAR_FIND_BIGGEST_OBJECT 4
#define CV_HAAR_DO_ROUGH_SEARCH     8

//CVAPI(CvSeq*) cvHaarDetectObjectsForROC( const CvArr* image,
//                     CvHaarClassifierCascade* cascade, CvMemStorage* storage,
//                     CvSeq** rejectLevels, CvSeq** levelWeightds,
//                     double scale_factor CV_DEFAULT(1.1),
//                     int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0),
//                     CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0)),
//                     bool outputRejectLevels = false );


CVAPI(CvSeq*) cvHaarDetectObjects( const CvArr* image,
                     CvHaarClassifierCascade* cascade, CvMemStorage* storage,
                     double scale_factor CV_DEFAULT(1.1),
                     int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0),
                     CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0)));

/* sets images for haar classifier cascade */
CVAPI(void) cvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* cascade,
                                                const CvArr* sum, const CvArr* sqsum,
                                                const CvArr* tilted_sum, double scale );

/* runs the cascade on the specified window */
CVAPI(int) cvRunHaarClassifierCascade( const CvHaarClassifierCascade* cascade,
                                       CvPoint pt, int start_stage CV_DEFAULT(0));


/****************************************************************************************\
*                         Latent SVM Object Detection functions                          *
\****************************************************************************************/

// DataType: STRUCT position
// Structure describes the position of the filter in the feature pyramid
// l - level in the feature pyramid
// (x, y) - coordinate in level l
typedef struct CvLSVMFilterPosition
{
    int x;
    int y;
    int l;
} CvLSVMFilterPosition;

// DataType: STRUCT filterObject
// Description of the filter, which corresponds to the part of the object
// V               - ideal (penalty = 0) position of the partial filter
//                   from the root filter position (V_i in the paper)
// penaltyFunction - vector describes penalty function (d_i in the paper)
//                   pf[0] * x + pf[1] * y + pf[2] * x^2 + pf[3] * y^2
// FILTER DESCRIPTION
//   Rectangular map (sizeX x sizeY),
//   every cell stores feature vector (dimension = p)
// H               - matrix of feature vectors
//                   to set and get feature vectors (i,j)
//                   used formula H[(j * sizeX + i) * p + k], where
//                   k - component of feature vector in cell (i, j)
// END OF FILTER DESCRIPTION
typedef struct CvLSVMFilterObject{
    CvLSVMFilterPosition V;
    float fineFunction[4];
    int sizeX;
    int sizeY;
    int numFeatures;
    float *H;
} CvLSVMFilterObject;

// data type: STRUCT CvLatentSvmDetector
// structure contains internal representation of trained Latent SVM detector
// num_filters          - total number of filters (root plus part) in model
// num_components       - number of components in model
// num_part_filters     - array containing number of part filters for each component
// filters              - root and part filters for all model components
// b                    - biases for all model components
// score_threshold      - confidence level threshold
typedef struct CvLatentSvmDetector
{
    int num_filters;
    int num_components;
    int* num_part_filters;
    CvLSVMFilterObject** filters;
    float* b;
    float score_threshold;
}
CvLatentSvmDetector;

// data type: STRUCT CvObjectDetection
// structure contains the bounding box and confidence level for detected object
// rect                 - bounding box for a detected object
// score                - confidence level
typedef struct CvObjectDetection
{
    CvRect rect;
    float score;
} CvObjectDetection;

//////////////// Object Detection using Latent SVM //////////////


/*
// load trained detector from a file
//
// API
// CvLatentSvmDetector* cvLoadLatentSvmDetector(const char* filename);
// INPUT
// filename             - path to the file containing the parameters of
                        - trained Latent SVM detector
// OUTPUT
// trained Latent SVM detector in internal representation
*/
CVAPI(CvLatentSvmDetector*) cvLoadLatentSvmDetector(const char* filename);

/*
// release memory allocated for CvLatentSvmDetector structure
//
// API
// void cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector);
// INPUT
// detector             - CvLatentSvmDetector structure to be released
// OUTPUT
*/
CVAPI(void) cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector);

/*
// find rectangular regions in the given image that are likely
// to contain objects and corresponding confidence levels
//
// API
// CvSeq* cvLatentSvmDetectObjects(const IplImage* image,
//                                  CvLatentSvmDetector* detector,
//                                  CvMemStorage* storage,
//                                  float overlap_threshold = 0.5f,
//                                  int numThreads = -1);
// INPUT
// image                - image to detect objects in
// detector             - Latent SVM detector in internal representation
// storage              - memory storage to store the resultant sequence
//                          of the object candidate rectangles
// overlap_threshold    - threshold for the non-maximum suppression algorithm
                           = 0.5f [here will be the reference to original paper]
// OUTPUT
// sequence of detected objects (bounding boxes and confidence levels stored in CvObjectDetection structures)
*/
CVAPI(CvSeq*) cvLatentSvmDetectObjects(IplImage* image,
                                CvLatentSvmDetector* detector,
                                CvMemStorage* storage,
                                float overlap_threshold CV_DEFAULT(0.5f),
                                int numThreads CV_DEFAULT(-1));

#ifdef __cplusplus
}

CV_EXPORTS CvSeq* cvHaarDetectObjectsForROC( const CvArr* image,
                     CvHaarClassifierCascade* cascade, CvMemStorage* storage,
                     std::vector<int>& rejectLevels, std::vector<double>& levelWeightds,
                     double scale_factor CV_DEFAULT(1.1),
                     int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0),
                     CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0)),
                     bool outputRejectLevels = false );

namespace cv
{

///////////////////////////// Object Detection ////////////////////////////

/*
 * This is a class wrapping up the structure CvLatentSvmDetector and functions working with it.
 * The class goals are:
 * 1) provide c++ interface;
 * 2) make it possible to load and detect more than one class (model) unlike CvLatentSvmDetector.
 */
class CV_EXPORTS LatentSvmDetector
{
public:
    struct CV_EXPORTS ObjectDetection
    {
        ObjectDetection();
        ObjectDetection( const Rect& rect, float score, int classID=-1 );
        Rect rect;
        float score;
        int classID;
    };

    LatentSvmDetector();
    LatentSvmDetector( const vector<string>& filenames, const vector<string>& classNames=vector<string>() );
    virtual ~LatentSvmDetector();

    virtual void clear();
    virtual bool empty() const;
    bool load( const vector<string>& filenames, const vector<string>& classNames=vector<string>() );

    virtual void detect( const Mat& image,
                         vector<ObjectDetection>& objectDetections,
                         float overlapThreshold=0.5f,
                         int numThreads=-1 );

    const vector<string>& getClassNames() const;
    size_t getClassCount() const;

private:
    vector<CvLatentSvmDetector*> detectors;
    vector<string> classNames;
};

// class for grouping object candidates, detected by Cascade Classifier, HOG etc.
// instance of the class is to be passed to cv::partition (see cxoperations.hpp)
class CV_EXPORTS SimilarRects
{
public:
    SimilarRects(double _eps) : eps(_eps) {}
    inline bool operator()(const Rect& r1, const Rect& r2) const
    {
        double delta = eps*(std::min(r1.width, r2.width) + std::min(r1.height, r2.height))*0.5;
        return std::abs(r1.x - r2.x) <= delta &&
            std::abs(r1.y - r2.y) <= delta &&
            std::abs(r1.x + r1.width - r2.x - r2.width) <= delta &&
            std::abs(r1.y + r1.height - r2.y - r2.height) <= delta;
    }
    double eps;
};

CV_EXPORTS void groupRectangles(CV_OUT CV_IN_OUT vector<Rect>& rectList, int groupThreshold, double eps=0.2);
CV_EXPORTS_W void groupRectangles(CV_OUT CV_IN_OUT vector<Rect>& rectList, CV_OUT vector<int>& weights, int groupThreshold, double eps=0.2);
CV_EXPORTS void groupRectangles( vector<Rect>& rectList, int groupThreshold, double eps, vector<int>* weights, vector<double>* levelWeights );
CV_EXPORTS void groupRectangles(vector<Rect>& rectList, vector<int>& rejectLevels,
                                vector<double>& levelWeights, int groupThreshold, double eps=0.2);
CV_EXPORTS void groupRectangles_meanshift(vector<Rect>& rectList, vector<double>& foundWeights, vector<double>& foundScales,
                                          double detectThreshold = 0.0, Size winDetSize = Size(64, 128));


class CV_EXPORTS FeatureEvaluator
{
public:
    enum { HAAR = 0, LBP = 1, HOG = 2 };
    virtual ~FeatureEvaluator();

    virtual bool read(const FileNode& node);
    virtual Ptr<FeatureEvaluator> clone() const;
    virtual int getFeatureType() const;

    virtual bool setImage(const Mat& img, Size origWinSize);
    virtual bool setWindow(Point p);

    virtual double calcOrd(int featureIdx) const;
    virtual int calcCat(int featureIdx) const;

    static Ptr<FeatureEvaluator> create(int type);
};

template<> CV_EXPORTS void Ptr<CvHaarClassifierCascade>::delete_obj();

enum
{
    CASCADE_DO_CANNY_PRUNING=1,
    CASCADE_SCALE_IMAGE=2,
    CASCADE_FIND_BIGGEST_OBJECT=4,
    CASCADE_DO_ROUGH_SEARCH=8
};

class CV_EXPORTS_W CascadeClassifier
{
public:
    CV_WRAP CascadeClassifier();
    CV_WRAP CascadeClassifier( const string& filename );
    virtual ~CascadeClassifier();

    CV_WRAP virtual bool empty() const;
    CV_WRAP bool load( const string& filename );
    virtual bool read( const FileNode& node );
    CV_WRAP virtual void detectMultiScale( const Mat& image,
                                   CV_OUT vector<Rect>& objects,
                                   double scaleFactor=1.1,
                                   int minNeighbors=3, int flags=0,
                                   Size minSize=Size(),
                                   Size maxSize=Size() );

    CV_WRAP virtual void detectMultiScale( const Mat& image,
                                   CV_OUT vector<Rect>& objects,
                                   vector<int>& rejectLevels,
                                   vector<double>& levelWeights,
                                   double scaleFactor=1.1,
                                   int minNeighbors=3, int flags=0,
                                   Size minSize=Size(),
                                   Size maxSize=Size(),
                                   bool outputRejectLevels=false );


    bool isOldFormatCascade() const;
    virtual Size getOriginalWindowSize() const;
    int getFeatureType() const;
    bool setImage( const Mat& );

protected:
    //virtual bool detectSingleScale( const Mat& image, int stripCount, Size processingRectSize,
    //                                int stripSize, int yStep, double factor, vector<Rect>& candidates );

    virtual bool detectSingleScale( const Mat& image, int stripCount, Size processingRectSize,
                                    int stripSize, int yStep, double factor, vector<Rect>& candidates,
                                    vector<int>& rejectLevels, vector<double>& levelWeights, bool outputRejectLevels=false);

protected:
    enum { BOOST = 0 };
    enum { DO_CANNY_PRUNING = 1, SCALE_IMAGE = 2,
           FIND_BIGGEST_OBJECT = 4, DO_ROUGH_SEARCH = 8 };

    friend class CascadeClassifierInvoker;

    template<class FEval>
    friend int predictOrdered( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);

    template<class FEval>
    friend int predictCategorical( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);

    template<class FEval>
    friend int predictOrderedStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);

    template<class FEval>
    friend int predictCategoricalStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);

    bool setImage( Ptr<FeatureEvaluator>& feval, const Mat& image);
    virtual int runAt( Ptr<FeatureEvaluator>& feval, Point pt, double& weight );

    class Data
    {
    public:
        struct CV_EXPORTS DTreeNode
        {
            int featureIdx;
            float threshold; // for ordered features only
            int left;
            int right;
        };

        struct CV_EXPORTS DTree
        {
            int nodeCount;
        };

        struct CV_EXPORTS Stage
        {
            int first;
            int ntrees;
            float threshold;
        };

        bool read(const FileNode &node);

        bool isStumpBased;

        int stageType;
        int featureType;
        int ncategories;
        Size origWinSize;

        vector<Stage> stages;
        vector<DTree> classifiers;
        vector<DTreeNode> nodes;
        vector<float> leaves;
        vector<int> subsets;
    };

    Data data;
    Ptr<FeatureEvaluator> featureEvaluator;
    Ptr<CvHaarClassifierCascade> oldCascade;

public:
    class CV_EXPORTS MaskGenerator
    {
    public:
        virtual ~MaskGenerator() {}
        virtual cv::Mat generateMask(const cv::Mat& src)=0;
        virtual void initializeMask(const cv::Mat& /*src*/) {};
    };
    void setMaskGenerator(Ptr<MaskGenerator> maskGenerator);
    Ptr<MaskGenerator> getMaskGenerator();

    void setFaceDetectionMaskGenerator();

protected:
    Ptr<MaskGenerator> maskGenerator;
};


//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////

// struct for detection region of interest (ROI)
struct DetectionROI
{
   // scale(size) of the bounding box
   double scale;
   // set of requrested locations to be evaluated
   vector<cv::Point> locations;
   // vector that will contain confidence values for each location
   vector<double> confidences;
};

struct CV_EXPORTS_W HOGDescriptor
{
public:
    enum { L2Hys=0 };
    enum { DEFAULT_NLEVELS=64 };

    CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8),
        cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1),
        histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true),
        nlevels(HOGDescriptor::DEFAULT_NLEVELS)
    {}

    CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride,
                  Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1,
                  int _histogramNormType=HOGDescriptor::L2Hys,
                  double _L2HysThreshold=0.2, bool _gammaCorrection=false,
                  int _nlevels=HOGDescriptor::DEFAULT_NLEVELS)
    : winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize),
    nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma),
    histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold),
    gammaCorrection(_gammaCorrection), nlevels(_nlevels)
    {}

    CV_WRAP HOGDescriptor(const String& filename)
    {
        load(filename);
    }

    HOGDescriptor(const HOGDescriptor& d)
    {
        d.copyTo(*this);
    }

    virtual ~HOGDescriptor() {}

    CV_WRAP size_t getDescriptorSize() const;
    CV_WRAP bool checkDetectorSize() const;
    CV_WRAP double getWinSigma() const;

    CV_WRAP virtual void setSVMDetector(InputArray _svmdetector);

    virtual bool read(FileNode& fn);
    virtual void write(FileStorage& fs, const String& objname) const;

    CV_WRAP virtual bool load(const String& filename, const String& objname=String());
    CV_WRAP virtual void save(const String& filename, const String& objname=String()) const;
    virtual void copyTo(HOGDescriptor& c) const;

    CV_WRAP virtual void compute(const Mat& img,
                         CV_OUT vector<float>& descriptors,
                         Size winStride=Size(), Size padding=Size(),
                         const vector<Point>& locations=vector<Point>()) const;
    //with found weights output
    CV_WRAP virtual void detect(const Mat& img, CV_OUT vector<Point>& foundLocations,
                        CV_OUT vector<double>& weights,
                        double hitThreshold=0, Size winStride=Size(),
                        Size padding=Size(),
                        const vector<Point>& searchLocations=vector<Point>()) const;
    //without found weights output
    virtual void detect(const Mat& img, CV_OUT vector<Point>& foundLocations,
                        double hitThreshold=0, Size winStride=Size(),
                        Size padding=Size(),
                        const vector<Point>& searchLocations=vector<Point>()) const;
    //with result weights output
    CV_WRAP virtual void detectMultiScale(const Mat& img, CV_OUT vector<Rect>& foundLocations,
                                  CV_OUT vector<double>& foundWeights, double hitThreshold=0,
                                  Size winStride=Size(), Size padding=Size(), double scale=1.05,
                                  double finalThreshold=2.0,bool useMeanshiftGrouping = false) const;
    //without found weights output
    virtual void detectMultiScale(const Mat& img, CV_OUT vector<Rect>& foundLocations,
                                  double hitThreshold=0, Size winStride=Size(),
                                  Size padding=Size(), double scale=1.05,
                                  double finalThreshold=2.0, bool useMeanshiftGrouping = false) const;

    CV_WRAP virtual void computeGradient(const Mat& img, CV_OUT Mat& grad, CV_OUT Mat& angleOfs,
                                 Size paddingTL=Size(), Size paddingBR=Size()) const;

    CV_WRAP static vector<float> getDefaultPeopleDetector();
    CV_WRAP static vector<float> getDaimlerPeopleDetector();

    CV_PROP Size winSize;
    CV_PROP Size blockSize;
    CV_PROP Size blockStride;
    CV_PROP Size cellSize;
    CV_PROP int nbins;
    CV_PROP int derivAperture;
    CV_PROP double winSigma;
    CV_PROP int histogramNormType;
    CV_PROP double L2HysThreshold;
    CV_PROP bool gammaCorrection;
    CV_PROP vector<float> svmDetector;
    CV_PROP int nlevels;


   // evaluate specified ROI and return confidence value for each location
   void detectROI(const cv::Mat& img, const vector<cv::Point> &locations,
                                   CV_OUT std::vector<cv::Point>& foundLocations, CV_OUT std::vector<double>& confidences,
                                   double hitThreshold = 0, cv::Size winStride = Size(),
                                   cv::Size padding = Size()) const;

   // evaluate specified ROI and return confidence value for each location in multiple scales
   void detectMultiScaleROI(const cv::Mat& img,
                                                       CV_OUT std::vector<cv::Rect>& foundLocations,
                                                       std::vector<DetectionROI>& locations,
                                                       double hitThreshold = 0,
                                                       int groupThreshold = 0) const;

   // read/parse Dalal's alt model file
   void readALTModel(std::string modelfile);
   void groupRectangles(vector<cv::Rect>& rectList, vector<double>& weights, int groupThreshold, double eps) const;
};


CV_EXPORTS_W void findDataMatrix(InputArray image,
                                 CV_OUT vector<string>& codes,
                                 OutputArray corners=noArray(),
                                 OutputArrayOfArrays dmtx=noArray());
CV_EXPORTS_W void drawDataMatrixCodes(InputOutputArray image,
                                      const vector<string>& codes,
                                      InputArray corners);
}

/****************************************************************************************\
*                                Datamatrix                                              *
\****************************************************************************************/

struct CV_EXPORTS CvDataMatrixCode {
  char msg[4];
  CvMat *original;
  CvMat *corners;
};

CV_EXPORTS std::deque<CvDataMatrixCode> cvFindDataMatrix(CvMat *im);

/****************************************************************************************\
*                                 LINE-MOD                                               *
\****************************************************************************************/

namespace cv {
namespace linemod {

using cv::FileNode;
using cv::FileStorage;
using cv::Mat;
using cv::noArray;
using cv::OutputArrayOfArrays;
using cv::Point;
using cv::Ptr;
using cv::Rect;
using cv::Size;

/// @todo Convert doxy comments to rst

/**
 * \brief Discriminant feature described by its location and label.
 */
struct CV_EXPORTS Feature
{
  int x; ///< x offset
  int y; ///< y offset
  int label; ///< Quantization

  Feature() : x(0), y(0), label(0) {}
  Feature(int x, int y, int label);

  void read(const FileNode& fn);
  void write(FileStorage& fs) const;
};

inline Feature::Feature(int _x, int _y, int _label) : x(_x), y(_y), label(_label) {}

struct CV_EXPORTS Template
{
  int width;
  int height;
  int pyramid_level;
  std::vector<Feature> features;

  void read(const FileNode& fn);
  void write(FileStorage& fs) const;
};

/**
 * \brief Represents a modality operating over an image pyramid.
 */
class QuantizedPyramid
{
public:
  // Virtual destructor
  virtual ~QuantizedPyramid() {}

  /**
   * \brief Compute quantized image at current pyramid level for online detection.
   *
   * \param[out] dst The destination 8-bit image. For each pixel at most one bit is set,
   *                 representing its classification.
   */
  virtual void quantize(Mat& dst) const =0;

  /**
   * \brief Extract most discriminant features at current pyramid level to form a new template.
   *
   * \param[out] templ The new template.
   */
  virtual bool extractTemplate(Template& templ) const =0;

  /**
   * \brief Go to the next pyramid level.
   *
   * \todo Allow pyramid scale factor other than 2
   */
  virtual void pyrDown() =0;

protected:
  /// Candidate feature with a score
  struct Candidate
  {
    Candidate(int x, int y, int label, float score);

    /// Sort candidates with high score to the front
    bool operator<(const Candidate& rhs) const
    {
      return score > rhs.score;
    }

    Feature f;
    float score;
  };

  /**
   * \brief Choose candidate features so that they are not bunched together.
   *
   * \param[in]  candidates   Candidate features sorted by score.
   * \param[out] features     Destination vector of selected features.
   * \param[in]  num_features Number of candidates to select.
   * \param[in]  distance     Hint for desired distance between features.
   */
  static void selectScatteredFeatures(const std::vector<Candidate>& candidates,
                                      std::vector<Feature>& features,
                                      size_t num_features, float distance);
};

inline QuantizedPyramid::Candidate::Candidate(int x, int y, int label, float _score) : f(x, y, label), score(_score) {}

/**
 * \brief Interface for modalities that plug into the LINE template matching representation.
 *
 * \todo Max response, to allow optimization of summing (255/MAX) features as uint8
 */
class CV_EXPORTS Modality
{
public:
  // Virtual destructor
  virtual ~Modality() {}

  /**
   * \brief Form a quantized image pyramid from a source image.
   *
   * \param[in] src  The source image. Type depends on the modality.
   * \param[in] mask Optional mask. If not empty, unmasked pixels are set to zero
   *                 in quantized image and cannot be extracted as features.
   */
  Ptr<QuantizedPyramid> process(const Mat& src,
                    const Mat& mask = Mat()) const
  {
    return processImpl(src, mask);
  }

  virtual std::string name() const =0;

  virtual void read(const FileNode& fn) =0;
  virtual void write(FileStorage& fs) const =0;

  /**
   * \brief Create modality by name.
   *
   * The following modality types are supported:
   * - "ColorGradient"
   * - "DepthNormal"
   */
  static Ptr<Modality> create(const std::string& modality_type);

  /**
   * \brief Load a modality from file.
   */
  static Ptr<Modality> create(const FileNode& fn);

protected:
  // Indirection is because process() has a default parameter.
  virtual Ptr<QuantizedPyramid> processImpl(const Mat& src,
                        const Mat& mask) const =0;
};

/**
 * \brief Modality that computes quantized gradient orientations from a color image.
 */
class CV_EXPORTS ColorGradient : public Modality
{
public:
  /**
   * \brief Default constructor. Uses reasonable default parameter values.
   */
  ColorGradient();

  /**
   * \brief Constructor.
   *
   * \param weak_threshold   When quantizing, discard gradients with magnitude less than this.
   * \param num_features     How many features a template must contain.
   * \param strong_threshold Consider as candidate features only gradients whose norms are
   *                         larger than this.
   */
  ColorGradient(float weak_threshold, size_t num_features, float strong_threshold);

  virtual std::string name() const;

  virtual void read(const FileNode& fn);
  virtual void write(FileStorage& fs) const;

  float weak_threshold;
  size_t num_features;
  float strong_threshold;

protected:
  virtual Ptr<QuantizedPyramid> processImpl(const Mat& src,
                        const Mat& mask) const;
};

/**
 * \brief Modality that computes quantized surface normals from a dense depth map.
 */
class CV_EXPORTS DepthNormal : public Modality
{
public:
  /**
   * \brief Default constructor. Uses reasonable default parameter values.
   */
  DepthNormal();

  /**
   * \brief Constructor.
   *
   * \param distance_threshold   Ignore pixels beyond this distance.
   * \param difference_threshold When computing normals, ignore contributions of pixels whose
   *                             depth difference with the central pixel is above this threshold.
   * \param num_features         How many features a template must contain.
   * \param extract_threshold    Consider as candidate feature only if there are no differing
   *                             orientations within a distance of extract_threshold.
   */
  DepthNormal(int distance_threshold, int difference_threshold, size_t num_features,
              int extract_threshold);

  virtual std::string name() const;

  virtual void read(const FileNode& fn);
  virtual void write(FileStorage& fs) const;

  int distance_threshold;
  int difference_threshold;
  size_t num_features;
  int extract_threshold;

protected:
  virtual Ptr<QuantizedPyramid> processImpl(const Mat& src,
                        const Mat& mask) const;
};

/**
 * \brief Debug function to colormap a quantized image for viewing.
 */
void colormap(const Mat& quantized, Mat& dst);

/**
 * \brief Represents a successful template match.
 */
struct CV_EXPORTS Match
{
  Match()
  {
  }

  Match(int x, int y, float similarity, const std::string& class_id, int template_id);

  /// Sort matches with high similarity to the front
  bool operator<(const Match& rhs) const
  {
    // Secondarily sort on template_id for the sake of duplicate removal
    if (similarity != rhs.similarity)
      return similarity > rhs.similarity;
    else
      return template_id < rhs.template_id;
  }

  bool operator==(const Match& rhs) const
  {
    return x == rhs.x && y == rhs.y && similarity == rhs.similarity && class_id == rhs.class_id;
  }

  int x;
  int y;
  float similarity;
  std::string class_id;
  int template_id;
};

inline  Match::Match(int _x, int _y, float _similarity, const std::string& _class_id, int _template_id)
    : x(_x), y(_y), similarity(_similarity), class_id(_class_id), template_id(_template_id)
  {
  }

/**
 * \brief Object detector using the LINE template matching algorithm with any set of
 * modalities.
 */
class CV_EXPORTS Detector
{
public:
  /**
   * \brief Empty constructor, initialize with read().
   */
  Detector();

  /**
   * \brief Constructor.
   *
   * \param modalities       Modalities to use (color gradients, depth normals, ...).
   * \param T_pyramid        Value of the sampling step T at each pyramid level. The
   *                         number of pyramid levels is T_pyramid.size().
   */
  Detector(const std::vector< Ptr<Modality> >& modalities, const std::vector<int>& T_pyramid);

  /**
   * \brief Detect objects by template matching.
   *
   * Matches globally at the lowest pyramid level, then refines locally stepping up the pyramid.
   *
   * \param      sources   Source images, one for each modality.
   * \param      threshold Similarity threshold, a percentage between 0 and 100.
   * \param[out] matches   Template matches, sorted by similarity score.
   * \param      class_ids If non-empty, only search for the desired object classes.
   * \param[out] quantized_images Optionally return vector<Mat> of quantized images.
   * \param      masks     The masks for consideration during matching. The masks should be CV_8UC1
   *                       where 255 represents a valid pixel.  If non-empty, the vector must be
   *                       the same size as sources.  Each element must be
   *                       empty or the same size as its corresponding source.
   */
  void match(const std::vector<Mat>& sources, float threshold, std::vector<Match>& matches,
             const std::vector<std::string>& class_ids = std::vector<std::string>(),
             OutputArrayOfArrays quantized_images = noArray(),
             const std::vector<Mat>& masks = std::vector<Mat>()) const;

  /**
   * \brief Add new object template.
   *
   * \param      sources      Source images, one for each modality.
   * \param      class_id     Object class ID.
   * \param      object_mask  Mask separating object from background.
   * \param[out] bounding_box Optionally return bounding box of the extracted features.
   *
   * \return Template ID, or -1 if failed to extract a valid template.
   */
  int addTemplate(const std::vector<Mat>& sources, const std::string& class_id,
          const Mat& object_mask, Rect* bounding_box = NULL);

  /**
   * \brief Add a new object template computed by external means.
   */
  int addSyntheticTemplate(const std::vector<Template>& templates, const std::string& class_id);

  /**
   * \brief Get the modalities used by this detector.
   *
   * You are not permitted to add/remove modalities, but you may dynamic_cast them to
   * tweak parameters.
   */
  const std::vector< Ptr<Modality> >& getModalities() const { return modalities; }

  /**
   * \brief Get sampling step T at pyramid_level.
   */
  int getT(int pyramid_level) const { return T_at_level[pyramid_level]; }

  /**
   * \brief Get number of pyramid levels used by this detector.
   */
  int pyramidLevels() const { return pyramid_levels; }

  /**
   * \brief Get the template pyramid identified by template_id.
   *
   * For example, with 2 modalities (Gradient, Normal) and two pyramid levels
   * (L0, L1), the order is (GradientL0, NormalL0, GradientL1, NormalL1).
   */
  const std::vector<Template>& getTemplates(const std::string& class_id, int template_id) const;

  int numTemplates() const;
  int numTemplates(const std::string& class_id) const;
  int numClasses() const { return static_cast<int>(class_templates.size()); }

  std::vector<std::string> classIds() const;

  void read(const FileNode& fn);
  void write(FileStorage& fs) const;

  std::string readClass(const FileNode& fn, const std::string &class_id_override = "");
  void writeClass(const std::string& class_id, FileStorage& fs) const;

  void readClasses(const std::vector<std::string>& class_ids,
                   const std::string& format = "templates_%s.yml.gz");
  void writeClasses(const std::string& format = "templates_%s.yml.gz") const;

protected:
  std::vector< Ptr<Modality> > modalities;
  int pyramid_levels;
  std::vector<int> T_at_level;

  typedef std::vector<Template> TemplatePyramid;
  typedef std::map<std::string, std::vector<TemplatePyramid> > TemplatesMap;
  TemplatesMap class_templates;

  typedef std::vector<Mat> LinearMemories;
  // Indexed as [pyramid level][modality][quantized label]
  typedef std::vector< std::vector<LinearMemories> > LinearMemoryPyramid;

  void matchClass(const LinearMemoryPyramid& lm_pyramid,
                  const std::vector<Size>& sizes,
                  float threshold, std::vector<Match>& matches,
                  const std::string& class_id,
                  const std::vector<TemplatePyramid>& template_pyramids) const;
};

/**
 * \brief Factory function for detector using LINE algorithm with color gradients.
 *
 * Default parameter settings suitable for VGA images.
 */
CV_EXPORTS Ptr<Detector> getDefaultLINE();

/**
 * \brief Factory function for detector using LINE-MOD algorithm with color gradients
 * and depth normals.
 *
 * Default parameter settings suitable for VGA images.
 */
CV_EXPORTS Ptr<Detector> getDefaultLINEMOD();

} // namespace linemod
} // namespace cv

#endif

#endif