This file is indexed.

/usr/include/opencv2/gpu/device/scan.hpp is in libopencv-gpu-dev 2.4.9.1+dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_GPU_SCAN_HPP__
#define __OPENCV_GPU_SCAN_HPP__

#include "opencv2/gpu/device/common.hpp"
#include "opencv2/gpu/device/utility.hpp"
#include "opencv2/gpu/device/warp.hpp"
#include "opencv2/gpu/device/warp_shuffle.hpp"

namespace cv { namespace gpu { namespace device
{
    enum ScanKind { EXCLUSIVE = 0,  INCLUSIVE = 1 };

    template <ScanKind Kind, typename T, typename F> struct WarpScan
    {
        __device__ __forceinline__ WarpScan() {}
        __device__ __forceinline__ WarpScan(const WarpScan& other) { (void)other; }

        __device__ __forceinline__ T operator()( volatile T *ptr , const unsigned int idx)
        {
            const unsigned int lane = idx & 31;
            F op;

            if ( lane >=  1) ptr [idx ] = op(ptr [idx -  1], ptr [idx]);
            if ( lane >=  2) ptr [idx ] = op(ptr [idx -  2], ptr [idx]);
            if ( lane >=  4) ptr [idx ] = op(ptr [idx -  4], ptr [idx]);
            if ( lane >=  8) ptr [idx ] = op(ptr [idx -  8], ptr [idx]);
            if ( lane >= 16) ptr [idx ] = op(ptr [idx - 16], ptr [idx]);

            if( Kind == INCLUSIVE )
                return ptr [idx];
            else
                return (lane > 0) ? ptr [idx - 1] : 0;
        }

        __device__ __forceinline__ unsigned int index(const unsigned int tid)
        {
            return tid;
        }

        __device__ __forceinline__ void init(volatile T *ptr){}

        static const int warp_offset      = 0;

        typedef WarpScan<INCLUSIVE, T, F>  merge;
    };

    template <ScanKind Kind , typename T, typename F> struct WarpScanNoComp
    {
        __device__ __forceinline__ WarpScanNoComp() {}
        __device__ __forceinline__ WarpScanNoComp(const WarpScanNoComp& other) { (void)other; }

        __device__ __forceinline__ T operator()( volatile T *ptr , const unsigned int idx)
        {
            const unsigned int lane = threadIdx.x & 31;
            F op;

            ptr [idx ] = op(ptr [idx -  1], ptr [idx]);
            ptr [idx ] = op(ptr [idx -  2], ptr [idx]);
            ptr [idx ] = op(ptr [idx -  4], ptr [idx]);
            ptr [idx ] = op(ptr [idx -  8], ptr [idx]);
            ptr [idx ] = op(ptr [idx - 16], ptr [idx]);

            if( Kind == INCLUSIVE )
                return ptr [idx];
            else
                return (lane > 0) ? ptr [idx - 1] : 0;
        }

        __device__ __forceinline__ unsigned int index(const unsigned int tid)
        {
            return (tid >> warp_log) * warp_smem_stride + 16 + (tid & warp_mask);
        }

        __device__ __forceinline__ void init(volatile T *ptr)
        {
            ptr[threadIdx.x] = 0;
        }

        static const int warp_smem_stride = 32 + 16 + 1;
        static const int warp_offset      = 16;
        static const int warp_log         = 5;
        static const int warp_mask        = 31;

        typedef WarpScanNoComp<INCLUSIVE, T, F> merge;
    };

    template <ScanKind Kind , typename T, typename Sc, typename F> struct BlockScan
    {
        __device__ __forceinline__ BlockScan() {}
        __device__ __forceinline__ BlockScan(const BlockScan& other) { (void)other; }

        __device__ __forceinline__ T operator()(volatile T *ptr)
        {
            const unsigned int tid  = threadIdx.x;
            const unsigned int lane = tid & warp_mask;
            const unsigned int warp = tid >> warp_log;

            Sc scan;
            typename Sc::merge merge_scan;
            const unsigned int idx = scan.index(tid);

            T val = scan(ptr, idx);
            __syncthreads ();

            if( warp == 0)
                scan.init(ptr);
            __syncthreads ();

            if( lane == 31 )
                ptr [scan.warp_offset + warp ] = (Kind == INCLUSIVE) ? val : ptr [idx];
            __syncthreads ();

            if( warp == 0 )
                merge_scan(ptr, idx);
            __syncthreads();

            if ( warp > 0)
                val = ptr [scan.warp_offset + warp - 1] + val;
            __syncthreads ();

            ptr[idx] = val;
            __syncthreads ();

            return val ;
        }

        static const int warp_log  = 5;
        static const int warp_mask = 31;
    };

    template <typename T>
    __device__ T warpScanInclusive(T idata, volatile T* s_Data, unsigned int tid)
    {
    #if __CUDA_ARCH__ >= 300
        const unsigned int laneId = cv::gpu::device::Warp::laneId();

        // scan on shuffl functions
        #pragma unroll
        for (int i = 1; i <= (OPENCV_GPU_WARP_SIZE / 2); i *= 2)
        {
            const T n = cv::gpu::device::shfl_up(idata, i);
            if (laneId >= i)
                  idata += n;
        }

        return idata;
    #else
        unsigned int pos = 2 * tid - (tid & (OPENCV_GPU_WARP_SIZE - 1));
        s_Data[pos] = 0;
        pos += OPENCV_GPU_WARP_SIZE;
        s_Data[pos] = idata;

        s_Data[pos] += s_Data[pos - 1];
        s_Data[pos] += s_Data[pos - 2];
        s_Data[pos] += s_Data[pos - 4];
        s_Data[pos] += s_Data[pos - 8];
        s_Data[pos] += s_Data[pos - 16];

        return s_Data[pos];
    #endif
    }

    template <typename T>
    __device__ __forceinline__ T warpScanExclusive(T idata, volatile T* s_Data, unsigned int tid)
    {
        return warpScanInclusive(idata, s_Data, tid) - idata;
    }

    template <int tiNumScanThreads, typename T>
    __device__ T blockScanInclusive(T idata, volatile T* s_Data, unsigned int tid)
    {
        if (tiNumScanThreads > OPENCV_GPU_WARP_SIZE)
        {
            //Bottom-level inclusive warp scan
            T warpResult = warpScanInclusive(idata, s_Data, tid);

            //Save top elements of each warp for exclusive warp scan
            //sync to wait for warp scans to complete (because s_Data is being overwritten)
            __syncthreads();
            if ((tid & (OPENCV_GPU_WARP_SIZE - 1)) == (OPENCV_GPU_WARP_SIZE - 1))
            {
                s_Data[tid >> OPENCV_GPU_LOG_WARP_SIZE] = warpResult;
            }

            //wait for warp scans to complete
            __syncthreads();

            if (tid < (tiNumScanThreads / OPENCV_GPU_WARP_SIZE) )
            {
                //grab top warp elements
                T val = s_Data[tid];
                //calculate exclusive scan and write back to shared memory
                s_Data[tid] = warpScanExclusive(val, s_Data, tid);
            }

            //return updated warp scans with exclusive scan results
            __syncthreads();

            return warpResult + s_Data[tid >> OPENCV_GPU_LOG_WARP_SIZE];
        }
        else
        {
            return warpScanInclusive(idata, s_Data, tid);
        }
    }
}}}

#endif // __OPENCV_GPU_SCAN_HPP__