This file is indexed.

/usr/include/opencv2/flann/kdtree_single_index.h is in libopencv-flann-dev 2.4.9.1+dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
/***********************************************************************
 * Software License Agreement (BSD License)
 *
 * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 *
 * THE BSD LICENSE
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *************************************************************************/

#ifndef OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
#define OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_

#include <algorithm>
#include <map>
#include <cassert>
#include <cstring>

#include "general.h"
#include "nn_index.h"
#include "matrix.h"
#include "result_set.h"
#include "heap.h"
#include "allocator.h"
#include "random.h"
#include "saving.h"

namespace cvflann
{

struct KDTreeSingleIndexParams : public IndexParams
{
    KDTreeSingleIndexParams(int leaf_max_size = 10, bool reorder = true, int dim = -1)
    {
        (*this)["algorithm"] = FLANN_INDEX_KDTREE_SINGLE;
        (*this)["leaf_max_size"] = leaf_max_size;
        (*this)["reorder"] = reorder;
        (*this)["dim"] = dim;
    }
};


/**
 * Randomized kd-tree index
 *
 * Contains the k-d trees and other information for indexing a set of points
 * for nearest-neighbor matching.
 */
template <typename Distance>
class KDTreeSingleIndex : public NNIndex<Distance>
{
public:
    typedef typename Distance::ElementType ElementType;
    typedef typename Distance::ResultType DistanceType;


    /**
     * KDTree constructor
     *
     * Params:
     *          inputData = dataset with the input features
     *          params = parameters passed to the kdtree algorithm
     */
    KDTreeSingleIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KDTreeSingleIndexParams(),
                      Distance d = Distance() ) :
        dataset_(inputData), index_params_(params), distance_(d)
    {
        size_ = dataset_.rows;
        dim_ = dataset_.cols;
        int dim_param = get_param(params,"dim",-1);
        if (dim_param>0) dim_ = dim_param;
        leaf_max_size_ = get_param(params,"leaf_max_size",10);
        reorder_ = get_param(params,"reorder",true);

        // Create a permutable array of indices to the input vectors.
        vind_.resize(size_);
        for (size_t i = 0; i < size_; i++) {
            vind_[i] = (int)i;
        }
    }

    KDTreeSingleIndex(const KDTreeSingleIndex&);
    KDTreeSingleIndex& operator=(const KDTreeSingleIndex&);

    /**
     * Standard destructor
     */
    ~KDTreeSingleIndex()
    {
        if (reorder_) delete[] data_.data;
    }

    /**
     * Builds the index
     */
    void buildIndex()
    {
        computeBoundingBox(root_bbox_);
        root_node_ = divideTree(0, (int)size_, root_bbox_ );   // construct the tree

        if (reorder_) {
            delete[] data_.data;
            data_ = cvflann::Matrix<ElementType>(new ElementType[size_*dim_], size_, dim_);
            for (size_t i=0; i<size_; ++i) {
                for (size_t j=0; j<dim_; ++j) {
                    data_[i][j] = dataset_[vind_[i]][j];
                }
            }
        }
        else {
            data_ = dataset_;
        }
    }

    flann_algorithm_t getType() const
    {
        return FLANN_INDEX_KDTREE_SINGLE;
    }


    void saveIndex(FILE* stream)
    {
        save_value(stream, size_);
        save_value(stream, dim_);
        save_value(stream, root_bbox_);
        save_value(stream, reorder_);
        save_value(stream, leaf_max_size_);
        save_value(stream, vind_);
        if (reorder_) {
            save_value(stream, data_);
        }
        save_tree(stream, root_node_);
    }


    void loadIndex(FILE* stream)
    {
        load_value(stream, size_);
        load_value(stream, dim_);
        load_value(stream, root_bbox_);
        load_value(stream, reorder_);
        load_value(stream, leaf_max_size_);
        load_value(stream, vind_);
        if (reorder_) {
            load_value(stream, data_);
        }
        else {
            data_ = dataset_;
        }
        load_tree(stream, root_node_);


        index_params_["algorithm"] = getType();
        index_params_["leaf_max_size"] = leaf_max_size_;
        index_params_["reorder"] = reorder_;
    }

    /**
     *  Returns size of index.
     */
    size_t size() const
    {
        return size_;
    }

    /**
     * Returns the length of an index feature.
     */
    size_t veclen() const
    {
        return dim_;
    }

    /**
     * Computes the inde memory usage
     * Returns: memory used by the index
     */
    int usedMemory() const
    {
        return (int)(pool_.usedMemory+pool_.wastedMemory+dataset_.rows*sizeof(int));  // pool memory and vind array memory
    }


    /**
     * \brief Perform k-nearest neighbor search
     * \param[in] queries The query points for which to find the nearest neighbors
     * \param[out] indices The indices of the nearest neighbors found
     * \param[out] dists Distances to the nearest neighbors found
     * \param[in] knn Number of nearest neighbors to return
     * \param[in] params Search parameters
     */
    void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params)
    {
        assert(queries.cols == veclen());
        assert(indices.rows >= queries.rows);
        assert(dists.rows >= queries.rows);
        assert(int(indices.cols) >= knn);
        assert(int(dists.cols) >= knn);

        KNNSimpleResultSet<DistanceType> resultSet(knn);
        for (size_t i = 0; i < queries.rows; i++) {
            resultSet.init(indices[i], dists[i]);
            findNeighbors(resultSet, queries[i], params);
        }
    }

    IndexParams getParameters() const
    {
        return index_params_;
    }

    /**
     * Find set of nearest neighbors to vec. Their indices are stored inside
     * the result object.
     *
     * Params:
     *     result = the result object in which the indices of the nearest-neighbors are stored
     *     vec = the vector for which to search the nearest neighbors
     *     maxCheck = the maximum number of restarts (in a best-bin-first manner)
     */
    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
    {
        float epsError = 1+get_param(searchParams,"eps",0.0f);

        std::vector<DistanceType> dists(dim_,0);
        DistanceType distsq = computeInitialDistances(vec, dists);
        searchLevel(result, vec, root_node_, distsq, dists, epsError);
    }

private:


    /*--------------------- Internal Data Structures --------------------------*/
    struct Node
    {
        /**
         * Indices of points in leaf node
         */
        int left, right;
        /**
         * Dimension used for subdivision.
         */
        int divfeat;
        /**
         * The values used for subdivision.
         */
        DistanceType divlow, divhigh;
        /**
         * The child nodes.
         */
        Node* child1, * child2;
    };
    typedef Node* NodePtr;


    struct Interval
    {
        DistanceType low, high;
    };

    typedef std::vector<Interval> BoundingBox;

    typedef BranchStruct<NodePtr, DistanceType> BranchSt;
    typedef BranchSt* Branch;




    void save_tree(FILE* stream, NodePtr tree)
    {
        save_value(stream, *tree);
        if (tree->child1!=NULL) {
            save_tree(stream, tree->child1);
        }
        if (tree->child2!=NULL) {
            save_tree(stream, tree->child2);
        }
    }


    void load_tree(FILE* stream, NodePtr& tree)
    {
        tree = pool_.allocate<Node>();
        load_value(stream, *tree);
        if (tree->child1!=NULL) {
            load_tree(stream, tree->child1);
        }
        if (tree->child2!=NULL) {
            load_tree(stream, tree->child2);
        }
    }


    void computeBoundingBox(BoundingBox& bbox)
    {
        bbox.resize(dim_);
        for (size_t i=0; i<dim_; ++i) {
            bbox[i].low = (DistanceType)dataset_[0][i];
            bbox[i].high = (DistanceType)dataset_[0][i];
        }
        for (size_t k=1; k<dataset_.rows; ++k) {
            for (size_t i=0; i<dim_; ++i) {
                if (dataset_[k][i]<bbox[i].low) bbox[i].low = (DistanceType)dataset_[k][i];
                if (dataset_[k][i]>bbox[i].high) bbox[i].high = (DistanceType)dataset_[k][i];
            }
        }
    }


    /**
     * Create a tree node that subdivides the list of vecs from vind[first]
     * to vind[last].  The routine is called recursively on each sublist.
     * Place a pointer to this new tree node in the location pTree.
     *
     * Params: pTree = the new node to create
     *                  first = index of the first vector
     *                  last = index of the last vector
     */
    NodePtr divideTree(int left, int right, BoundingBox& bbox)
    {
        NodePtr node = pool_.allocate<Node>(); // allocate memory

        /* If too few exemplars remain, then make this a leaf node. */
        if ( (right-left) <= leaf_max_size_) {
            node->child1 = node->child2 = NULL;    /* Mark as leaf node. */
            node->left = left;
            node->right = right;

            // compute bounding-box of leaf points
            for (size_t i=0; i<dim_; ++i) {
                bbox[i].low = (DistanceType)dataset_[vind_[left]][i];
                bbox[i].high = (DistanceType)dataset_[vind_[left]][i];
            }
            for (int k=left+1; k<right; ++k) {
                for (size_t i=0; i<dim_; ++i) {
                    if (bbox[i].low>dataset_[vind_[k]][i]) bbox[i].low=(DistanceType)dataset_[vind_[k]][i];
                    if (bbox[i].high<dataset_[vind_[k]][i]) bbox[i].high=(DistanceType)dataset_[vind_[k]][i];
                }
            }
        }
        else {
            int idx;
            int cutfeat;
            DistanceType cutval;
            middleSplit_(&vind_[0]+left, right-left, idx, cutfeat, cutval, bbox);

            node->divfeat = cutfeat;

            BoundingBox left_bbox(bbox);
            left_bbox[cutfeat].high = cutval;
            node->child1 = divideTree(left, left+idx, left_bbox);

            BoundingBox right_bbox(bbox);
            right_bbox[cutfeat].low = cutval;
            node->child2 = divideTree(left+idx, right, right_bbox);

            node->divlow = left_bbox[cutfeat].high;
            node->divhigh = right_bbox[cutfeat].low;

            for (size_t i=0; i<dim_; ++i) {
                bbox[i].low = std::min(left_bbox[i].low, right_bbox[i].low);
                bbox[i].high = std::max(left_bbox[i].high, right_bbox[i].high);
            }
        }

        return node;
    }

    void computeMinMax(int* ind, int count, int dim, ElementType& min_elem, ElementType& max_elem)
    {
        min_elem = dataset_[ind[0]][dim];
        max_elem = dataset_[ind[0]][dim];
        for (int i=1; i<count; ++i) {
            ElementType val = dataset_[ind[i]][dim];
            if (val<min_elem) min_elem = val;
            if (val>max_elem) max_elem = val;
        }
    }

    void middleSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
    {
        // find the largest span from the approximate bounding box
        ElementType max_span = bbox[0].high-bbox[0].low;
        cutfeat = 0;
        cutval = (bbox[0].high+bbox[0].low)/2;
        for (size_t i=1; i<dim_; ++i) {
            ElementType span = bbox[i].high-bbox[i].low;
            if (span>max_span) {
                max_span = span;
                cutfeat = i;
                cutval = (bbox[i].high+bbox[i].low)/2;
            }
        }

        // compute exact span on the found dimension
        ElementType min_elem, max_elem;
        computeMinMax(ind, count, cutfeat, min_elem, max_elem);
        cutval = (min_elem+max_elem)/2;
        max_span = max_elem - min_elem;

        // check if a dimension of a largest span exists
        size_t k = cutfeat;
        for (size_t i=0; i<dim_; ++i) {
            if (i==k) continue;
            ElementType span = bbox[i].high-bbox[i].low;
            if (span>max_span) {
                computeMinMax(ind, count, i, min_elem, max_elem);
                span = max_elem - min_elem;
                if (span>max_span) {
                    max_span = span;
                    cutfeat = i;
                    cutval = (min_elem+max_elem)/2;
                }
            }
        }
        int lim1, lim2;
        planeSplit(ind, count, cutfeat, cutval, lim1, lim2);

        if (lim1>count/2) index = lim1;
        else if (lim2<count/2) index = lim2;
        else index = count/2;
    }


    void middleSplit_(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
    {
        const float EPS=0.00001f;
        DistanceType max_span = bbox[0].high-bbox[0].low;
        for (size_t i=1; i<dim_; ++i) {
            DistanceType span = bbox[i].high-bbox[i].low;
            if (span>max_span) {
                max_span = span;
            }
        }
        DistanceType max_spread = -1;
        cutfeat = 0;
        for (size_t i=0; i<dim_; ++i) {
            DistanceType span = bbox[i].high-bbox[i].low;
            if (span>(DistanceType)((1-EPS)*max_span)) {
                ElementType min_elem, max_elem;
                computeMinMax(ind, count, cutfeat, min_elem, max_elem);
                DistanceType spread = (DistanceType)(max_elem-min_elem);
                if (spread>max_spread) {
                    cutfeat = (int)i;
                    max_spread = spread;
                }
            }
        }
        // split in the middle
        DistanceType split_val = (bbox[cutfeat].low+bbox[cutfeat].high)/2;
        ElementType min_elem, max_elem;
        computeMinMax(ind, count, cutfeat, min_elem, max_elem);

        if (split_val<min_elem) cutval = (DistanceType)min_elem;
        else if (split_val>max_elem) cutval = (DistanceType)max_elem;
        else cutval = split_val;

        int lim1, lim2;
        planeSplit(ind, count, cutfeat, cutval, lim1, lim2);

        if (lim1>count/2) index = lim1;
        else if (lim2<count/2) index = lim2;
        else index = count/2;
    }


    /**
     *  Subdivide the list of points by a plane perpendicular on axe corresponding
     *  to the 'cutfeat' dimension at 'cutval' position.
     *
     *  On return:
     *  dataset[ind[0..lim1-1]][cutfeat]<cutval
     *  dataset[ind[lim1..lim2-1]][cutfeat]==cutval
     *  dataset[ind[lim2..count]][cutfeat]>cutval
     */
    void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2)
    {
        /* Move vector indices for left subtree to front of list. */
        int left = 0;
        int right = count-1;
        for (;; ) {
            while (left<=right && dataset_[ind[left]][cutfeat]<cutval) ++left;
            while (left<=right && dataset_[ind[right]][cutfeat]>=cutval) --right;
            if (left>right) break;
            std::swap(ind[left], ind[right]); ++left; --right;
        }
        /* If either list is empty, it means that all remaining features
         * are identical. Split in the middle to maintain a balanced tree.
         */
        lim1 = left;
        right = count-1;
        for (;; ) {
            while (left<=right && dataset_[ind[left]][cutfeat]<=cutval) ++left;
            while (left<=right && dataset_[ind[right]][cutfeat]>cutval) --right;
            if (left>right) break;
            std::swap(ind[left], ind[right]); ++left; --right;
        }
        lim2 = left;
    }

    DistanceType computeInitialDistances(const ElementType* vec, std::vector<DistanceType>& dists)
    {
        DistanceType distsq = 0.0;

        for (size_t i = 0; i < dim_; ++i) {
            if (vec[i] < root_bbox_[i].low) {
                dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].low, (int)i);
                distsq += dists[i];
            }
            if (vec[i] > root_bbox_[i].high) {
                dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].high, (int)i);
                distsq += dists[i];
            }
        }

        return distsq;
    }

    /**
     * Performs an exact search in the tree starting from a node.
     */
    void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, const NodePtr node, DistanceType mindistsq,
                     std::vector<DistanceType>& dists, const float epsError)
    {
        /* If this is a leaf node, then do check and return. */
        if ((node->child1 == NULL)&&(node->child2 == NULL)) {
            DistanceType worst_dist = result_set.worstDist();
            for (int i=node->left; i<node->right; ++i) {
                int index = reorder_ ? i : vind_[i];
                DistanceType dist = distance_(vec, data_[index], dim_, worst_dist);
                if (dist<worst_dist) {
                    result_set.addPoint(dist,vind_[i]);
                }
            }
            return;
        }

        /* Which child branch should be taken first? */
        int idx = node->divfeat;
        ElementType val = vec[idx];
        DistanceType diff1 = val - node->divlow;
        DistanceType diff2 = val - node->divhigh;

        NodePtr bestChild;
        NodePtr otherChild;
        DistanceType cut_dist;
        if ((diff1+diff2)<0) {
            bestChild = node->child1;
            otherChild = node->child2;
            cut_dist = distance_.accum_dist(val, node->divhigh, idx);
        }
        else {
            bestChild = node->child2;
            otherChild = node->child1;
            cut_dist = distance_.accum_dist( val, node->divlow, idx);
        }

        /* Call recursively to search next level down. */
        searchLevel(result_set, vec, bestChild, mindistsq, dists, epsError);

        DistanceType dst = dists[idx];
        mindistsq = mindistsq + cut_dist - dst;
        dists[idx] = cut_dist;
        if (mindistsq*epsError<=result_set.worstDist()) {
            searchLevel(result_set, vec, otherChild, mindistsq, dists, epsError);
        }
        dists[idx] = dst;
    }

private:

    /**
     * The dataset used by this index
     */
    const Matrix<ElementType> dataset_;

    IndexParams index_params_;

    int leaf_max_size_;
    bool reorder_;


    /**
     *  Array of indices to vectors in the dataset.
     */
    std::vector<int> vind_;

    Matrix<ElementType> data_;

    size_t size_;
    size_t dim_;

    /**
     * Array of k-d trees used to find neighbours.
     */
    NodePtr root_node_;

    BoundingBox root_bbox_;

    /**
     * Pooled memory allocator.
     *
     * Using a pooled memory allocator is more efficient
     * than allocating memory directly when there is a large
     * number small of memory allocations.
     */
    PooledAllocator pool_;

    Distance distance_;
};   // class KDTree

}

#endif //OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_