This file is indexed.

/usr/include/opencv2/core/wimage.hpp is in libopencv-core-dev 2.4.9.1+dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
///////////////////////////////////////////////////////////////////////////////
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to
//  this license.  If you do not agree to this license, do not download,
//  install, copy or use the software.
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2008, Google, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
//  * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//  * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//  * The name of Intel Corporation or contributors may not be used to endorse
//     or promote products derived from this software without specific
//     prior written permission.
//
// This software is provided by the copyright holders and contributors "as is"
// and any express or implied warranties, including, but not limited to, the
// implied warranties of merchantability and fitness for a particular purpose
// are disclaimed. In no event shall the Intel Corporation or contributors be
// liable for any direct, indirect, incidental, special, exemplary, or
// consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.


/////////////////////////////////////////////////////////////////////////////////
//
// Image class which provides a thin layer around an IplImage.  The goals
// of the class design are:
//    1. All the data has explicit ownership to avoid memory leaks
//    2. No hidden allocations or copies for performance.
//    3. Easy access to OpenCV methods (which will access IPP if available)
//    4. Can easily treat external data as an image
//    5. Easy to create images which are subsets of other images
//    6. Fast pixel access which can take advantage of number of channels
//          if known at compile time.
//
// The WImage class is the image class which provides the data accessors.
// The 'W' comes from the fact that it is also a wrapper around the popular
// but inconvenient IplImage class. A WImage can be constructed either using a
// WImageBuffer class which allocates and frees the data,
// or using a WImageView class which constructs a subimage or a view into
// external data.  The view class does no memory management.  Each class
// actually has two versions, one when the number of channels is known at
// compile time and one when it isn't.  Using the one with the number of
// channels specified can provide some compile time optimizations by using the
// fact that the number of channels is a constant.
//
// We use the convention (c,r) to refer to column c and row r with (0,0) being
// the upper left corner.  This is similar to standard Euclidean coordinates
// with the first coordinate varying in the horizontal direction and the second
// coordinate varying in the vertical direction.
// Thus (c,r) is usually in the domain [0, width) X [0, height)
//
// Example usage:
// WImageBuffer3_b  im(5,7);  // Make a 5X7 3 channel image of type uchar
// WImageView3_b  sub_im(im, 2,2, 3,3); // 3X3 submatrix
// vector<float> vec(10, 3.0f);
// WImageView1_f user_im(&vec[0], 2, 5);  // 2X5 image w/ supplied data
//
// im.SetZero();  // same as cvSetZero(im.Ipl())
// *im(2, 3) = 15;  // Modify the element at column 2, row 3
// MySetRand(&sub_im);
//
// // Copy the second row into the first.  This can be done with no memory
// // allocation and will use SSE if IPP is available.
// int w = im.Width();
// im.View(0,0, w,1).CopyFrom(im.View(0,1, w,1));
//
// // Doesn't care about source of data since using WImage
// void MySetRand(WImage_b* im) { // Works with any number of channels
//   for (int r = 0; r < im->Height(); ++r) {
//     float* row = im->Row(r);
//     for (int c = 0; c < im->Width(); ++c) {
//        for (int ch = 0; ch < im->Channels(); ++ch, ++row) {
//          *row = uchar(rand() & 255);
//        }
//     }
//   }
// }
//
// Functions that are not part of the basic image allocation, viewing, and
// access should come from OpenCV, except some useful functions that are not
// part of OpenCV can be found in wimage_util.h
#ifndef __OPENCV_CORE_WIMAGE_HPP__
#define __OPENCV_CORE_WIMAGE_HPP__

#include "opencv2/core/core_c.h"

#ifdef __cplusplus

namespace cv {

template <typename T> class WImage;
template <typename T> class WImageBuffer;
template <typename T> class WImageView;

template<typename T, int C> class WImageC;
template<typename T, int C> class WImageBufferC;
template<typename T, int C> class WImageViewC;

// Commonly used typedefs.
typedef WImage<uchar>            WImage_b;
typedef WImageView<uchar>        WImageView_b;
typedef WImageBuffer<uchar>      WImageBuffer_b;

typedef WImageC<uchar, 1>        WImage1_b;
typedef WImageViewC<uchar, 1>    WImageView1_b;
typedef WImageBufferC<uchar, 1>  WImageBuffer1_b;

typedef WImageC<uchar, 3>        WImage3_b;
typedef WImageViewC<uchar, 3>    WImageView3_b;
typedef WImageBufferC<uchar, 3>  WImageBuffer3_b;

typedef WImage<float>            WImage_f;
typedef WImageView<float>        WImageView_f;
typedef WImageBuffer<float>      WImageBuffer_f;

typedef WImageC<float, 1>        WImage1_f;
typedef WImageViewC<float, 1>    WImageView1_f;
typedef WImageBufferC<float, 1>  WImageBuffer1_f;

typedef WImageC<float, 3>        WImage3_f;
typedef WImageViewC<float, 3>    WImageView3_f;
typedef WImageBufferC<float, 3>  WImageBuffer3_f;

// There isn't a standard for signed and unsigned short so be more
// explicit in the typename for these cases.
typedef WImage<short>            WImage_16s;
typedef WImageView<short>        WImageView_16s;
typedef WImageBuffer<short>      WImageBuffer_16s;

typedef WImageC<short, 1>        WImage1_16s;
typedef WImageViewC<short, 1>    WImageView1_16s;
typedef WImageBufferC<short, 1>  WImageBuffer1_16s;

typedef WImageC<short, 3>        WImage3_16s;
typedef WImageViewC<short, 3>    WImageView3_16s;
typedef WImageBufferC<short, 3>  WImageBuffer3_16s;

typedef WImage<ushort>            WImage_16u;
typedef WImageView<ushort>        WImageView_16u;
typedef WImageBuffer<ushort>      WImageBuffer_16u;

typedef WImageC<ushort, 1>        WImage1_16u;
typedef WImageViewC<ushort, 1>    WImageView1_16u;
typedef WImageBufferC<ushort, 1>  WImageBuffer1_16u;

typedef WImageC<ushort, 3>        WImage3_16u;
typedef WImageViewC<ushort, 3>    WImageView3_16u;
typedef WImageBufferC<ushort, 3>  WImageBuffer3_16u;

//
// WImage definitions
//
// This WImage class gives access to the data it refers to.  It can be
// constructed either by allocating the data with a WImageBuffer class or
// using the WImageView class to refer to a subimage or outside data.
template<typename T>
class WImage
{
public:
    typedef T BaseType;

    // WImage is an abstract class with no other virtual methods so make the
    // destructor virtual.
    virtual ~WImage() = 0;

    // Accessors
    IplImage* Ipl() {return image_; }
    const IplImage* Ipl() const {return image_; }
    T* ImageData() { return reinterpret_cast<T*>(image_->imageData); }
    const T* ImageData() const {
        return reinterpret_cast<const T*>(image_->imageData);
    }

    int Width() const {return image_->width; }
    int Height() const {return image_->height; }

    // WidthStep is the number of bytes to go to the pixel with the next y coord
    int WidthStep() const {return image_->widthStep; }

    int Channels() const {return image_->nChannels; }
    int ChannelSize() const {return sizeof(T); }  // number of bytes per channel

    // Number of bytes per pixel
    int PixelSize() const {return Channels() * ChannelSize(); }

    // Return depth type (e.g. IPL_DEPTH_8U, IPL_DEPTH_32F) which is the number
    // of bits per channel and with the signed bit set.
    // This is known at compile time using specializations.
    int Depth() const;

    inline const T* Row(int r) const {
        return reinterpret_cast<T*>(image_->imageData + r*image_->widthStep);
    }

    inline T* Row(int r) {
        return reinterpret_cast<T*>(image_->imageData + r*image_->widthStep);
    }

    // Pixel accessors which returns a pointer to the start of the channel
    inline T* operator() (int c, int r)  {
        return reinterpret_cast<T*>(image_->imageData + r*image_->widthStep) +
            c*Channels();
    }

    inline const T* operator() (int c, int r) const  {
        return reinterpret_cast<T*>(image_->imageData + r*image_->widthStep) +
            c*Channels();
    }

    // Copy the contents from another image which is just a convenience to cvCopy
    void CopyFrom(const WImage<T>& src) { cvCopy(src.Ipl(), image_); }

    // Set contents to zero which is just a convenient to cvSetZero
    void SetZero() { cvSetZero(image_); }

    // Construct a view into a region of this image
    WImageView<T> View(int c, int r, int width, int height);

protected:
    // Disallow copy and assignment
    WImage(const WImage&);
    void operator=(const WImage&);

    explicit WImage(IplImage* img) : image_(img) {
        assert(!img || img->depth == Depth());
    }

    void SetIpl(IplImage* image) {
        assert(!image || image->depth == Depth());
        image_ = image;
    }

    IplImage* image_;
};



// Image class when both the pixel type and number of channels
// are known at compile time.  This wrapper will speed up some of the operations
// like accessing individual pixels using the () operator.
template<typename T, int C>
class WImageC : public WImage<T>
{
public:
    typedef typename WImage<T>::BaseType BaseType;
    enum { kChannels = C };

    explicit WImageC(IplImage* img) : WImage<T>(img) {
        assert(!img || img->nChannels == Channels());
    }

    // Construct a view into a region of this image
    WImageViewC<T, C> View(int c, int r, int width, int height);

    // Copy the contents from another image which is just a convenience to cvCopy
    void CopyFrom(const WImageC<T, C>& src) {
        cvCopy(src.Ipl(), WImage<T>::image_);
    }

    // WImageC is an abstract class with no other virtual methods so make the
    // destructor virtual.
    virtual ~WImageC() = 0;

    int Channels() const {return C; }

protected:
    // Disallow copy and assignment
    WImageC(const WImageC&);
    void operator=(const WImageC&);

    void SetIpl(IplImage* image) {
        assert(!image || image->depth == WImage<T>::Depth());
        WImage<T>::SetIpl(image);
    }
};

//
// WImageBuffer definitions
//
// Image class which owns the data, so it can be allocated and is always
// freed.  It cannot be copied but can be explicity cloned.
//
template<typename T>
class WImageBuffer : public WImage<T>
{
public:
    typedef typename WImage<T>::BaseType BaseType;

    // Default constructor which creates an object that can be
    WImageBuffer() : WImage<T>(0) {}

    WImageBuffer(int width, int height, int nchannels) : WImage<T>(0) {
        Allocate(width, height, nchannels);
    }

    // Constructor which takes ownership of a given IplImage so releases
    // the image on destruction.
    explicit WImageBuffer(IplImage* img) : WImage<T>(img) {}

    // Allocate an image.  Does nothing if current size is the same as
    // the new size.
    void Allocate(int width, int height, int nchannels);

    // Set the data to point to an image, releasing the old data
    void SetIpl(IplImage* img) {
        ReleaseImage();
        WImage<T>::SetIpl(img);
    }

    // Clone an image which reallocates the image if of a different dimension.
    void CloneFrom(const WImage<T>& src) {
        Allocate(src.Width(), src.Height(), src.Channels());
        CopyFrom(src);
    }

    ~WImageBuffer() {
        ReleaseImage();
    }

    // Release the image if it isn't null.
    void ReleaseImage() {
        if (WImage<T>::image_) {
            IplImage* image = WImage<T>::image_;
            cvReleaseImage(&image);
            WImage<T>::SetIpl(0);
        }
    }

    bool IsNull() const {return WImage<T>::image_ == NULL; }

private:
    // Disallow copy and assignment
    WImageBuffer(const WImageBuffer&);
    void operator=(const WImageBuffer&);
};

// Like a WImageBuffer class but when the number of channels is known
// at compile time.
template<typename T, int C>
class WImageBufferC : public WImageC<T, C>
{
public:
    typedef typename WImage<T>::BaseType BaseType;
    enum { kChannels = C };

    // Default constructor which creates an object that can be
    WImageBufferC() : WImageC<T, C>(0) {}

    WImageBufferC(int width, int height) : WImageC<T, C>(0) {
        Allocate(width, height);
    }

    // Constructor which takes ownership of a given IplImage so releases
    // the image on destruction.
    explicit WImageBufferC(IplImage* img) : WImageC<T, C>(img) {}

    // Allocate an image.  Does nothing if current size is the same as
    // the new size.
    void Allocate(int width, int height);

    // Set the data to point to an image, releasing the old data
    void SetIpl(IplImage* img) {
        ReleaseImage();
        WImageC<T, C>::SetIpl(img);
    }

    // Clone an image which reallocates the image if of a different dimension.
    void CloneFrom(const WImageC<T, C>& src) {
        Allocate(src.Width(), src.Height());
        CopyFrom(src);
    }

    ~WImageBufferC() {
        ReleaseImage();
    }

    // Release the image if it isn't null.
    void ReleaseImage() {
        if (WImage<T>::image_) {
            IplImage* image = WImage<T>::image_;
            cvReleaseImage(&image);
            WImageC<T, C>::SetIpl(0);
        }
    }

    bool IsNull() const {return WImage<T>::image_ == NULL; }

private:
    // Disallow copy and assignment
    WImageBufferC(const WImageBufferC&);
    void operator=(const WImageBufferC&);
};

//
// WImageView definitions
//
// View into an image class which allows treating a subimage as an image
// or treating external data as an image
//
template<typename T>
class WImageView : public WImage<T>
{
public:
    typedef typename WImage<T>::BaseType BaseType;

    // Construct a subimage.  No checks are done that the subimage lies
    // completely inside the original image.
    WImageView(WImage<T>* img, int c, int r, int width, int height);

    // Refer to external data.
    // If not given width_step assumed to be same as width.
    WImageView(T* data, int width, int height, int channels, int width_step = -1);

    // Refer to external data.  This does NOT take ownership
    // of the supplied IplImage.
    WImageView(IplImage* img) : WImage<T>(img) {}

    // Copy constructor
    WImageView(const WImage<T>& img) : WImage<T>(0) {
        header_ = *(img.Ipl());
        WImage<T>::SetIpl(&header_);
    }

    WImageView& operator=(const WImage<T>& img) {
        header_ = *(img.Ipl());
        WImage<T>::SetIpl(&header_);
        return *this;
    }

protected:
    IplImage header_;
};


template<typename T, int C>
class WImageViewC : public WImageC<T, C>
{
public:
    typedef typename WImage<T>::BaseType BaseType;
    enum { kChannels = C };

    // Default constructor needed for vectors of views.
    WImageViewC();

    virtual ~WImageViewC() {}

    // Construct a subimage.  No checks are done that the subimage lies
    // completely inside the original image.
    WImageViewC(WImageC<T, C>* img,
        int c, int r, int width, int height);

    // Refer to external data
    WImageViewC(T* data, int width, int height, int width_step = -1);

    // Refer to external data.  This does NOT take ownership
    // of the supplied IplImage.
    WImageViewC(IplImage* img) : WImageC<T, C>(img) {}

    // Copy constructor which does a shallow copy to allow multiple views
    // of same data.  gcc-4.1.1 gets confused if both versions of
    // the constructor and assignment operator are not provided.
    WImageViewC(const WImageC<T, C>& img) : WImageC<T, C>(0) {
        header_ = *(img.Ipl());
        WImageC<T, C>::SetIpl(&header_);
    }
    WImageViewC(const WImageViewC<T, C>& img) : WImageC<T, C>(0) {
        header_ = *(img.Ipl());
        WImageC<T, C>::SetIpl(&header_);
    }

    WImageViewC& operator=(const WImageC<T, C>& img) {
        header_ = *(img.Ipl());
        WImageC<T, C>::SetIpl(&header_);
        return *this;
    }
    WImageViewC& operator=(const WImageViewC<T, C>& img) {
        header_ = *(img.Ipl());
        WImageC<T, C>::SetIpl(&header_);
        return *this;
    }

protected:
    IplImage header_;
};


// Specializations for depth
template<>
inline int WImage<uchar>::Depth() const {return IPL_DEPTH_8U; }
template<>
inline int WImage<signed char>::Depth() const {return IPL_DEPTH_8S; }
template<>
inline int WImage<short>::Depth() const {return IPL_DEPTH_16S; }
template<>
inline int WImage<ushort>::Depth() const {return IPL_DEPTH_16U; }
template<>
inline int WImage<int>::Depth() const {return IPL_DEPTH_32S; }
template<>
inline int WImage<float>::Depth() const {return IPL_DEPTH_32F; }
template<>
inline int WImage<double>::Depth() const {return IPL_DEPTH_64F; }

//
// Pure virtual destructors still need to be defined.
//
template<typename T> inline WImage<T>::~WImage() {}
template<typename T, int C> inline WImageC<T, C>::~WImageC() {}

//
// Allocate ImageData
//
template<typename T>
inline void WImageBuffer<T>::Allocate(int width, int height, int nchannels)
{
    if (IsNull() || WImage<T>::Width() != width ||
        WImage<T>::Height() != height || WImage<T>::Channels() != nchannels) {
        ReleaseImage();
        WImage<T>::image_ = cvCreateImage(cvSize(width, height),
            WImage<T>::Depth(), nchannels);
    }
}

template<typename T, int C>
inline void WImageBufferC<T, C>::Allocate(int width, int height)
{
    if (IsNull() || WImage<T>::Width() != width || WImage<T>::Height() != height) {
        ReleaseImage();
        WImageC<T, C>::SetIpl(cvCreateImage(cvSize(width, height),WImage<T>::Depth(), C));
    }
}

//
// ImageView methods
//
template<typename T>
WImageView<T>::WImageView(WImage<T>* img, int c, int r, int width, int height)
        : WImage<T>(0)
{
    header_ = *(img->Ipl());
    header_.imageData = reinterpret_cast<char*>((*img)(c, r));
    header_.width = width;
    header_.height = height;
    WImage<T>::SetIpl(&header_);
}

template<typename T>
WImageView<T>::WImageView(T* data, int width, int height, int nchannels, int width_step)
          : WImage<T>(0)
{
    cvInitImageHeader(&header_, cvSize(width, height), WImage<T>::Depth(), nchannels);
    header_.imageData = reinterpret_cast<char*>(data);
    if (width_step > 0) {
        header_.widthStep = width_step;
    }
    WImage<T>::SetIpl(&header_);
}

template<typename T, int C>
WImageViewC<T, C>::WImageViewC(WImageC<T, C>* img, int c, int r, int width, int height)
        : WImageC<T, C>(0)
{
    header_ = *(img->Ipl());
    header_.imageData = reinterpret_cast<char*>((*img)(c, r));
    header_.width = width;
    header_.height = height;
    WImageC<T, C>::SetIpl(&header_);
}

template<typename T, int C>
WImageViewC<T, C>::WImageViewC() : WImageC<T, C>(0) {
    cvInitImageHeader(&header_, cvSize(0, 0), WImage<T>::Depth(), C);
    header_.imageData = reinterpret_cast<char*>(0);
    WImageC<T, C>::SetIpl(&header_);
}

template<typename T, int C>
WImageViewC<T, C>::WImageViewC(T* data, int width, int height, int width_step)
    : WImageC<T, C>(0)
{
    cvInitImageHeader(&header_, cvSize(width, height), WImage<T>::Depth(), C);
    header_.imageData = reinterpret_cast<char*>(data);
    if (width_step > 0) {
        header_.widthStep = width_step;
    }
    WImageC<T, C>::SetIpl(&header_);
}

// Construct a view into a region of an image
template<typename T>
WImageView<T> WImage<T>::View(int c, int r, int width, int height) {
    return WImageView<T>(this, c, r, width, height);
}

template<typename T, int C>
WImageViewC<T, C> WImageC<T, C>::View(int c, int r, int width, int height) {
    return WImageViewC<T, C>(this, c, r, width, height);
}

}  // end of namespace

#endif // __cplusplus

#endif