This file is indexed.

/usr/include/opencv2/core/affine.hpp is in libopencv-core-dev 2.4.9.1+dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_CORE_AFFINE3_HPP__
#define __OPENCV_CORE_AFFINE3_HPP__

#ifdef __cplusplus

#include <opencv2/core/core.hpp>

namespace cv
{
    template<typename T>
    class Affine3
    {
    public:
        typedef T float_type;
        typedef Matx<float_type, 3, 3> Mat3;
        typedef Matx<float_type, 4, 4> Mat4;
        typedef Vec<float_type, 3> Vec3;

        Affine3();

        //Augmented affine matrix
        Affine3(const Mat4& affine);

        //Rotation matrix
        Affine3(const Mat3& R, const Vec3& t = Vec3::all(0));

        //Rodrigues vector
        Affine3(const Vec3& rvec, const Vec3& t = Vec3::all(0));

        //Combines all contructors above. Supports 4x4, 4x3, 3x3, 1x3, 3x1 sizes of data matrix
        explicit Affine3(const Mat& data, const Vec3& t = Vec3::all(0));

        //From 16th element array
        explicit Affine3(const float_type* vals);

        static Affine3 Identity();

        //Rotation matrix
        void rotation(const Mat3& R);

        //Rodrigues vector
        void rotation(const Vec3& rvec);

        //Combines rotation methods above. Suports 3x3, 1x3, 3x1 sizes of data matrix;
        void rotation(const Mat& data);

        void linear(const Mat3& L);
        void translation(const Vec3& t);

        Mat3 rotation() const;
        Mat3 linear() const;
        Vec3 translation() const;

        //Rodrigues vector
        Vec3 rvec() const;

        Affine3 inv(int method = cv::DECOMP_SVD) const;

        // a.rotate(R) is equivalent to Affine(R, 0) * a;
        Affine3 rotate(const Mat3& R) const;

        // a.rotate(R) is equivalent to Affine(rvec, 0) * a;
        Affine3 rotate(const Vec3& rvec) const;

        // a.translate(t) is equivalent to Affine(E, t) * a;
        Affine3 translate(const Vec3& t) const;

        // a.concatenate(affine) is equivalent to affine * a;
        Affine3 concatenate(const Affine3& affine) const;

        template <typename Y> operator Affine3<Y>() const;

        template <typename Y> Affine3<Y> cast() const;

        Mat4 matrix;

#if defined EIGEN_WORLD_VERSION && defined EIGEN_GEOMETRY_MODULE_H
        Affine3(const Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>& affine);
        Affine3(const Eigen::Transform<T, 3, Eigen::Affine>& affine);
        operator Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>() const;
        operator Eigen::Transform<T, 3, Eigen::Affine>() const;
#endif
    };

    template<typename T> static
    Affine3<T> operator*(const Affine3<T>& affine1, const Affine3<T>& affine2);

    template<typename T, typename V> static
    V operator*(const Affine3<T>& affine, const V& vector);

    typedef Affine3<float> Affine3f;
    typedef Affine3<double> Affine3d;

    static Vec3f operator*(const Affine3f& affine, const Vec3f& vector);
    static Vec3d operator*(const Affine3d& affine, const Vec3d& vector);

    template<typename _Tp> class DataType< Affine3<_Tp> >
    {
    public:
        typedef Affine3<_Tp>                               value_type;
        typedef Affine3<typename DataType<_Tp>::work_type> work_type;
        typedef _Tp                                        channel_type;

        enum { generic_type = 0,
               depth        = DataType<channel_type>::depth,
               channels     = 16,
               fmt          = DataType<channel_type>::fmt + ((channels - 1) << 8),
               type         = CV_MAKETYPE(depth, channels)
             };

        typedef Vec<channel_type, channels> vec_type;
    };
}


///////////////////////////////////////////////////////////////////////////////////
/// Implementaiton

template<typename T> inline
cv::Affine3<T>::Affine3()
    : matrix(Mat4::eye())
{}

template<typename T> inline
cv::Affine3<T>::Affine3(const Mat4& affine)
    : matrix(affine)
{}

template<typename T> inline
cv::Affine3<T>::Affine3(const Mat3& R, const Vec3& t)
{
    rotation(R);
    translation(t);
    matrix.val[12] = matrix.val[13] = matrix.val[14] = 0;
    matrix.val[15] = 1;
}

template<typename T> inline
cv::Affine3<T>::Affine3(const Vec3& _rvec, const Vec3& t)
{
    rotation(_rvec);
    translation(t);
    matrix.val[12] = matrix.val[13] = matrix.val[14] = 0;
    matrix.val[15] = 1;
}

template<typename T> inline
cv::Affine3<T>::Affine3(const cv::Mat& data, const Vec3& t)
{
    CV_Assert(data.type() == cv::DataType<T>::type);

    if (data.cols == 4 && data.rows == 4)
    {
        data.copyTo(matrix);
        return;
    }
    else if (data.cols == 4 && data.rows == 3)
    {
        rotation(data(Rect(0, 0, 3, 3)));
        translation(data(Rect(3, 0, 1, 3)));
        return;
    }

    rotation(data);
    translation(t);
    matrix.val[12] = matrix.val[13] = matrix.val[14] = 0;
    matrix.val[15] = 1;
}

template<typename T> inline
cv::Affine3<T>::Affine3(const float_type* vals) : matrix(vals)
{}

template<typename T> inline
cv::Affine3<T> cv::Affine3<T>::Identity()
{
    return Affine3<T>(cv::Affine3<T>::Mat4::eye());
}

template<typename T> inline
void cv::Affine3<T>::rotation(const Mat3& R)
{
    linear(R);
}

template<typename T> inline
void cv::Affine3<T>::rotation(const Vec3& _rvec)
{
    double rx = _rvec[0], ry = _rvec[1], rz = _rvec[2];
    double theta = std::sqrt(rx*rx + ry*ry + rz*rz);

    if (theta < DBL_EPSILON)
        rotation(Mat3::eye());
    else
    {
        const double I[] = { 1, 0, 0, 0, 1, 0, 0, 0, 1 };

        double c = std::cos(theta);
        double s = std::sin(theta);
        double c1 = 1. - c;
        double itheta = theta ? 1./theta : 0.;

        rx *= itheta; ry *= itheta; rz *= itheta;

        double rrt[] = { rx*rx, rx*ry, rx*rz, rx*ry, ry*ry, ry*rz, rx*rz, ry*rz, rz*rz };
        double _r_x_[] = { 0, -rz, ry, rz, 0, -rx, -ry, rx, 0 };
        Mat3 R;

        // R = cos(theta)*I + (1 - cos(theta))*r*rT + sin(theta)*[r_x]
        // where [r_x] is [0 -rz ry; rz 0 -rx; -ry rx 0]
        for(int k = 0; k < 9; ++k)
            R.val[k] = static_cast<float_type>(c*I[k] + c1*rrt[k] + s*_r_x_[k]);

        rotation(R);
    }
}

//Combines rotation methods above. Suports 3x3, 1x3, 3x1 sizes of data matrix;
template<typename T> inline
void cv::Affine3<T>::rotation(const cv::Mat& data)
{
    CV_Assert(data.type() == cv::DataType<T>::type);

    if (data.cols == 3 && data.rows == 3)
    {
        Mat3 R;
        data.copyTo(R);
        rotation(R);
    }
    else if ((data.cols == 3 && data.rows == 1) || (data.cols == 1 && data.rows == 3))
    {
        Vec3 _rvec;
        data.reshape(1, 3).copyTo(_rvec);
        rotation(_rvec);
    }
    else
        CV_Assert(!"Input marix can be 3x3, 1x3 or 3x1");
}

template<typename T> inline
void cv::Affine3<T>::linear(const Mat3& L)
{
    matrix.val[0] = L.val[0]; matrix.val[1] = L.val[1];  matrix.val[ 2] = L.val[2];
    matrix.val[4] = L.val[3]; matrix.val[5] = L.val[4];  matrix.val[ 6] = L.val[5];
    matrix.val[8] = L.val[6]; matrix.val[9] = L.val[7];  matrix.val[10] = L.val[8];
}

template<typename T> inline
void cv::Affine3<T>::translation(const Vec3& t)
{
    matrix.val[3] = t[0]; matrix.val[7] = t[1]; matrix.val[11] = t[2];
}

template<typename T> inline
typename cv::Affine3<T>::Mat3 cv::Affine3<T>::rotation() const
{
    return linear();
}

template<typename T> inline
typename cv::Affine3<T>::Mat3 cv::Affine3<T>::linear() const
{
    typename cv::Affine3<T>::Mat3 R;
    R.val[0] = matrix.val[0];  R.val[1] = matrix.val[1];  R.val[2] = matrix.val[ 2];
    R.val[3] = matrix.val[4];  R.val[4] = matrix.val[5];  R.val[5] = matrix.val[ 6];
    R.val[6] = matrix.val[8];  R.val[7] = matrix.val[9];  R.val[8] = matrix.val[10];
    return R;
}

template<typename T> inline
typename cv::Affine3<T>::Vec3 cv::Affine3<T>::translation() const
{
    return Vec3(matrix.val[3], matrix.val[7], matrix.val[11]);
}

template<typename T> inline
typename cv::Affine3<T>::Vec3 cv::Affine3<T>::rvec() const
{
    cv::Vec3d w;
    cv::Matx33d u, vt, R = rotation();
    cv::SVD::compute(R, w, u, vt, cv::SVD::FULL_UV + cv::SVD::MODIFY_A);
    R = u * vt;

    double rx = R.val[7] - R.val[5];
    double ry = R.val[2] - R.val[6];
    double rz = R.val[3] - R.val[1];

    double s = std::sqrt((rx*rx + ry*ry + rz*rz)*0.25);
    double c = (R.val[0] + R.val[4] + R.val[8] - 1) * 0.5;
    c = c > 1.0 ? 1.0 : c < -1.0 ? -1.0 : c;
    double theta = acos(c);

    if( s < 1e-5 )
    {
        if( c > 0 )
            rx = ry = rz = 0;
        else
        {
            double t;
            t = (R.val[0] + 1) * 0.5;
            rx = std::sqrt(std::max(t, 0.0));
            t = (R.val[4] + 1) * 0.5;
            ry = std::sqrt(std::max(t, 0.0)) * (R.val[1] < 0 ? -1.0 : 1.0);
            t = (R.val[8] + 1) * 0.5;
            rz = std::sqrt(std::max(t, 0.0)) * (R.val[2] < 0 ? -1.0 : 1.0);

            if( fabs(rx) < fabs(ry) && fabs(rx) < fabs(rz) && (R.val[5] > 0) != (ry*rz > 0) )
                rz = -rz;
            theta /= std::sqrt(rx*rx + ry*ry + rz*rz);
            rx *= theta;
            ry *= theta;
            rz *= theta;
        }
    }
    else
    {
        double vth = 1/(2*s);
        vth *= theta;
        rx *= vth; ry *= vth; rz *= vth;
    }

    return cv::Vec3d(rx, ry, rz);
}

template<typename T> inline
cv::Affine3<T> cv::Affine3<T>::inv(int method) const
{
    return matrix.inv(method);
}

template<typename T> inline
cv::Affine3<T> cv::Affine3<T>::rotate(const Mat3& R) const
{
    Mat3 Lc = linear();
    Vec3 tc = translation();
    Mat4 result;
    result.val[12] = result.val[13] = result.val[14] = 0;
    result.val[15] = 1;

    for(int j = 0; j < 3; ++j)
    {
        for(int i = 0; i < 3; ++i)
        {
            float_type value = 0;
            for(int k = 0; k < 3; ++k)
                value += R(j, k) * Lc(k, i);
            result(j, i) = value;
        }

        result(j, 3) = R.row(j).dot(tc.t());
    }
    return result;
}

template<typename T> inline
cv::Affine3<T> cv::Affine3<T>::rotate(const Vec3& _rvec) const
{
    return rotate(Affine3f(_rvec).rotation());
}

template<typename T> inline
cv::Affine3<T> cv::Affine3<T>::translate(const Vec3& t) const
{
    Mat4 m = matrix;
    m.val[ 3] += t[0];
    m.val[ 7] += t[1];
    m.val[11] += t[2];
    return m;
}

template<typename T> inline
cv::Affine3<T> cv::Affine3<T>::concatenate(const Affine3<T>& affine) const
{
    return (*this).rotate(affine.rotation()).translate(affine.translation());
}

template<typename T> template <typename Y> inline
cv::Affine3<T>::operator Affine3<Y>() const
{
    return Affine3<Y>(matrix);
}

template<typename T> template <typename Y> inline
cv::Affine3<Y> cv::Affine3<T>::cast() const
{
    return Affine3<Y>(matrix);
}

template<typename T> inline
cv::Affine3<T> cv::operator*(const cv::Affine3<T>& affine1, const cv::Affine3<T>& affine2)
{
    return affine2.concatenate(affine1);
}

template<typename T, typename V> inline
V cv::operator*(const cv::Affine3<T>& affine, const V& v)
{
    const typename Affine3<T>::Mat4& m = affine.matrix;

    V r;
    r.x = m.val[0] * v.x + m.val[1] * v.y + m.val[ 2] * v.z + m.val[ 3];
    r.y = m.val[4] * v.x + m.val[5] * v.y + m.val[ 6] * v.z + m.val[ 7];
    r.z = m.val[8] * v.x + m.val[9] * v.y + m.val[10] * v.z + m.val[11];
    return r;
}

static inline
cv::Vec3f cv::operator*(const cv::Affine3f& affine, const cv::Vec3f& v)
{
    const cv::Matx44f& m = affine.matrix;
    cv::Vec3f r;
    r.val[0] = m.val[0] * v[0] + m.val[1] * v[1] + m.val[ 2] * v[2] + m.val[ 3];
    r.val[1] = m.val[4] * v[0] + m.val[5] * v[1] + m.val[ 6] * v[2] + m.val[ 7];
    r.val[2] = m.val[8] * v[0] + m.val[9] * v[1] + m.val[10] * v[2] + m.val[11];
    return r;
}

static inline
cv::Vec3d cv::operator*(const cv::Affine3d& affine, const cv::Vec3d& v)
{
    const cv::Matx44d& m = affine.matrix;
    cv::Vec3d r;
    r.val[0] = m.val[0] * v[0] + m.val[1] * v[1] + m.val[ 2] * v[2] + m.val[ 3];
    r.val[1] = m.val[4] * v[0] + m.val[5] * v[1] + m.val[ 6] * v[2] + m.val[ 7];
    r.val[2] = m.val[8] * v[0] + m.val[9] * v[1] + m.val[10] * v[2] + m.val[11];
    return r;
}



#if defined EIGEN_WORLD_VERSION && defined EIGEN_GEOMETRY_MODULE_H

template<typename T> inline
cv::Affine3<T>::Affine3(const Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>& affine)
{
    cv::Mat(4, 4, cv::DataType<T>::type, affine.matrix().data()).copyTo(matrix);
}

template<typename T> inline
cv::Affine3<T>::Affine3(const Eigen::Transform<T, 3, Eigen::Affine>& affine)
{
    Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)> a = affine;
    cv::Mat(4, 4, cv::DataType<T>::type, a.matrix().data()).copyTo(matrix);
}

template<typename T> inline
cv::Affine3<T>::operator Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>() const
{
    Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)> r;
    cv::Mat hdr(4, 4, cv::DataType<T>::type, r.matrix().data());
    cv::Mat(matrix, false).copyTo(hdr);
    return r;
}

template<typename T> inline
cv::Affine3<T>::operator Eigen::Transform<T, 3, Eigen::Affine>() const
{
    return this->operator Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>();
}

#endif /* defined EIGEN_WORLD_VERSION && defined EIGEN_GEOMETRY_MODULE_H */


#endif /* __cplusplus */

#endif /* __OPENCV_CORE_AFFINE3_HPP__ */