This file is indexed.

/usr/include/octave-4.0.3/octave/ov-bool-mat.cc is in liboctave-dev 4.0.3-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
/*

Copyright (C) 1996-2015 John W. Eaton
Copyright (C) 2009-2010 VZLU Prague

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <iostream>
#include <vector>

#include "lo-ieee.h"
#include "mx-base.h"
#include "oct-locbuf.h"

#include "defun.h"
#include "gripes.h"
#include "mxarray.h"
#include "oct-obj.h"
#include "oct-hdf5.h"
#include "ops.h"
#include "ov-base.h"
#include "ov-base-mat.h"
#include "ov-base-mat.cc"
#include "ov-bool.h"
#include "ov-bool-mat.h"
#include "ov-re-mat.h"
#include "pr-output.h"

#include "byte-swap.h"
#include "ls-oct-ascii.h"
#include "ls-hdf5.h"
#include "ls-utils.h"

template class octave_base_matrix<boolNDArray>;


DEFINE_OV_TYPEID_FUNCTIONS_AND_DATA (octave_bool_matrix,
                                     "bool matrix", "logical");

static octave_base_value *
default_numeric_conversion_function (const octave_base_value& a)
{
  CAST_CONV_ARG (const octave_bool_matrix&);

  return new octave_matrix (NDArray (v.bool_array_value ()));
}

octave_base_value::type_conv_info
octave_bool_matrix::numeric_conversion_function (void) const
{
  return octave_base_value::type_conv_info (default_numeric_conversion_function,
                                            octave_matrix::static_type_id ());
}

octave_base_value *
octave_bool_matrix::try_narrowing_conversion (void)
{
  octave_base_value *retval = 0;

  if (matrix.ndims () == 2)
    {
      boolMatrix bm (matrix);

      octave_idx_type nr = bm.rows ();
      octave_idx_type nc = bm.cols ();

      if (nr == 1 && nc == 1)
        retval = new octave_bool (bm (0, 0));
    }

  return retval;
}

double
octave_bool_matrix::double_value (bool) const
{
  double retval = lo_ieee_nan_value ();

  if (rows () > 0 && columns () > 0)
    {
      gripe_implicit_conversion ("Octave:array-to-scalar",
                                 "bool matrix", "real scalar");

      retval = matrix (0, 0);
    }
  else
    gripe_invalid_conversion ("bool matrix", "real scalar");

  return retval;
}

float
octave_bool_matrix::float_value (bool) const
{
  float retval = lo_ieee_float_nan_value ();

  if (rows () > 0 && columns () > 0)
    {
      gripe_implicit_conversion ("Octave:array-to-scalar",
                                 "bool matrix", "real scalar");

      retval = matrix (0, 0);
    }
  else
    gripe_invalid_conversion ("bool matrix", "real scalar");

  return retval;
}

Complex
octave_bool_matrix::complex_value (bool) const
{
  double tmp = lo_ieee_nan_value ();

  Complex retval (tmp, tmp);

  if (rows () > 0 && columns () > 0)
    {
      gripe_implicit_conversion ("Octave:array-to-scalar",
                                 "bool matrix", "complex scalar");

      retval = matrix (0, 0);
    }
  else
    gripe_invalid_conversion ("bool matrix", "complex scalar");

  return retval;
}

FloatComplex
octave_bool_matrix::float_complex_value (bool) const
{
  float tmp = lo_ieee_float_nan_value ();

  FloatComplex retval (tmp, tmp);

  if (rows () > 0 && columns () > 0)
    {
      gripe_implicit_conversion ("Octave:array-to-scalar",
                                 "bool matrix", "complex scalar");

      retval = matrix (0, 0);
    }
  else
    gripe_invalid_conversion ("bool matrix", "complex scalar");

  return retval;
}

octave_value
octave_bool_matrix::convert_to_str_internal (bool pad, bool force,
                                             char type) const
{
  octave_value tmp = octave_value (array_value ());
  return tmp.convert_to_str (pad, force, type);
}

void
octave_bool_matrix::print_raw (std::ostream& os,
                               bool pr_as_read_syntax) const
{
  octave_print_internal (os, matrix, pr_as_read_syntax,
                         current_print_indent_level ());
}

bool
octave_bool_matrix::save_ascii (std::ostream& os)
{
  dim_vector d = dims ();
  if (d.length () > 2)
    {
      NDArray tmp = array_value ();
      os << "# ndims: " << d.length () << "\n";

      for (int i = 0; i < d.length (); i++)
        os << " " << d (i);

      os << "\n" << tmp;
    }
  else
    {
      // Keep this case, rather than use generic code above for backward
      // compatiability. Makes load_ascii much more complex!!
      os << "# rows: " << rows () << "\n"
         << "# columns: " << columns () << "\n";

      Matrix tmp = matrix_value ();

      os << tmp;
    }

  return true;
}

bool
octave_bool_matrix::load_ascii (std::istream& is)
{
  bool success = true;

  string_vector keywords (2);

  keywords[0] = "ndims";
  keywords[1] = "rows";

  std::string kw;
  octave_idx_type val = 0;

  if (extract_keyword (is, keywords, kw, val, true))
    {
      if (kw == "ndims")
        {
          int mdims = static_cast<int> (val);

          if (mdims >= 0)
            {
              dim_vector dv;
              dv.resize (mdims);

              for (int i = 0; i < mdims; i++)
                is >> dv(i);

              if (is)
                {
                  boolNDArray btmp (dv);

                  if (btmp.is_empty ())
                    matrix = btmp;
                  else
                    {
                      NDArray tmp(dv);
                      is >> tmp;

                      if (is)
                        {
                          for (octave_idx_type i = 0; i < btmp.nelem (); i++)
                            btmp.elem (i) = (tmp.elem (i) != 0.);

                          matrix = btmp;
                        }
                      else
                        {
                          error ("load: failed to load matrix constant");
                          success = false;
                        }
                    }
                }
              else
                {
                  error ("load: failed to extract dimensions");
                  success = false;
                }
            }
          else
            {
              error ("load: failed to extract number of dimensions");
              success = false;
            }
        }
      else if (kw == "rows")
        {
          octave_idx_type nr = val;
          octave_idx_type nc = 0;

          if (nr >= 0 && extract_keyword (is, "columns", nc) && nc >= 0)
            {
              if (nr > 0 && nc > 0)
                {
                  Matrix tmp (nr, nc);
                  is >> tmp;
                  if (is)
                    {
                      boolMatrix btmp (nr, nc);
                      for (octave_idx_type j = 0; j < nc; j++)
                        for (octave_idx_type i = 0; i < nr; i++)
                          btmp.elem (i,j) = (tmp.elem (i, j) != 0.);

                      matrix = btmp;
                    }
                  else
                    {
                      error ("load: failed to load matrix constant");
                      success = false;
                    }
                }
              else if (nr == 0 || nc == 0)
                matrix = boolMatrix (nr, nc);
              else
                panic_impossible ();
            }
          else
            {
              error ("load: failed to extract number of rows and columns");
              success = false;
            }
        }
      else
        panic_impossible ();
    }
  else
    {
      error ("load: failed to extract number of rows and columns");
      success = false;
    }

  return success;
}

bool
octave_bool_matrix::save_binary (std::ostream& os, bool& /* save_as_floats */)
{

  dim_vector d = dims ();
  if (d.length () < 1)
    return false;

  // Use negative value for ndims to differentiate with old format!!
  int32_t tmp = - d.length ();
  os.write (reinterpret_cast<char *> (&tmp), 4);
  for (int i = 0; i < d.length (); i++)
    {
      tmp = d(i);
      os.write (reinterpret_cast<char *> (&tmp), 4);
    }

  boolNDArray m = bool_array_value ();
  bool *mtmp = m.fortran_vec ();
  octave_idx_type nel = m.nelem ();
  OCTAVE_LOCAL_BUFFER (char, htmp, nel);

  for (octave_idx_type i = 0; i < nel; i++)
    htmp[i] = (mtmp[i] ? 1 : 0);

  os.write (htmp, nel);

  return true;
}

bool
octave_bool_matrix::load_binary (std::istream& is, bool swap,
                                 oct_mach_info::float_format /* fmt */)
{
  int32_t mdims;
  if (! is.read (reinterpret_cast<char *> (&mdims), 4))
    return false;
  if (swap)
    swap_bytes<4> (&mdims);
  if (mdims >= 0)
    return false;

  // mdims is negative for consistency with other matrices, where it is
  // negative to allow the positive value to be used for rows/cols for
  // backward compatibility
  mdims = - mdims;
  int32_t di;
  dim_vector dv;
  dv.resize (mdims);

  for (int i = 0; i < mdims; i++)
    {
      if (! is.read (reinterpret_cast<char *> (&di), 4))
        return false;
      if (swap)
        swap_bytes<4> (&di);
      dv(i) = di;
    }

  // Convert an array with a single dimension to be a row vector.
  // Octave should never write files like this, other software
  // might.

  if (mdims == 1)
    {
      mdims = 2;
      dv.resize (mdims);
      dv(1) = dv(0);
      dv(0) = 1;
    }

  octave_idx_type nel = dv.numel ();
  OCTAVE_LOCAL_BUFFER (char, htmp, nel);
  if (! is.read (htmp, nel))
    return false;
  boolNDArray m(dv);
  bool *mtmp = m.fortran_vec ();
  for (octave_idx_type i = 0; i < nel; i++)
    mtmp[i] = (htmp[i] ? 1 : 0);
  matrix = m;

  return true;
}

bool
octave_bool_matrix::save_hdf5 (octave_hdf5_id loc_id, const char *name,
                               bool /* save_as_floats */)
{
  bool retval = true;

#if defined (HAVE_HDF5)

  dim_vector dv = dims ();
  int empty = save_hdf5_empty (loc_id, name, dv);
  if (empty)
    return (empty > 0);

  int rank = dv.length ();
  hid_t space_hid, data_hid;
  space_hid = data_hid = -1;
  boolNDArray m = bool_array_value ();

  OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank);

  // Octave uses column-major, while HDF5 uses row-major ordering
  for (int i = 0; i < rank; i++)
    hdims[i] = dv (rank-i-1);

  space_hid = H5Screate_simple (rank, hdims, 0);
  if (space_hid < 0) return false;
#if HAVE_HDF5_18
  data_hid = H5Dcreate (loc_id, name, H5T_NATIVE_HBOOL, space_hid,
                        H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
#else
  data_hid = H5Dcreate (loc_id, name, H5T_NATIVE_HBOOL, space_hid,
                        H5P_DEFAULT);
#endif
  if (data_hid < 0)
    {
      H5Sclose (space_hid);
      return false;
    }

  octave_idx_type nel = m.nelem ();
  bool *mtmp = m.fortran_vec ();
  OCTAVE_LOCAL_BUFFER (hbool_t, htmp, nel);

  for (octave_idx_type i = 0; i < nel; i++)
    htmp[i] = mtmp[i];

  retval = H5Dwrite (data_hid, H5T_NATIVE_HBOOL, H5S_ALL, H5S_ALL,
                     H5P_DEFAULT, htmp) >= 0;

  H5Dclose (data_hid);
  H5Sclose (space_hid);

#else
  gripe_save ("hdf5");
#endif

  return retval;
}

bool
octave_bool_matrix::load_hdf5 (octave_hdf5_id loc_id, const char *name)
{
  bool retval = false;

#if defined (HAVE_HDF5)

  dim_vector dv;
  int empty = load_hdf5_empty (loc_id, name, dv);
  if (empty > 0)
    matrix.resize (dv);
  if (empty)
    return (empty > 0);

#if HAVE_HDF5_18
  hid_t data_hid = H5Dopen (loc_id, name, H5P_DEFAULT);
#else
  hid_t data_hid = H5Dopen (loc_id, name);
#endif
  hid_t space_id = H5Dget_space (data_hid);

  hsize_t rank = H5Sget_simple_extent_ndims (space_id);

  if (rank < 1)
    {
      H5Dclose (data_hid);
      return false;
    }

  OCTAVE_LOCAL_BUFFER (hsize_t, hdims, rank);
  OCTAVE_LOCAL_BUFFER (hsize_t, maxdims, rank);

  H5Sget_simple_extent_dims (space_id, hdims, maxdims);

  // Octave uses column-major, while HDF5 uses row-major ordering
  if (rank == 1)
    {
      dv.resize (2);
      dv(0) = 1;
      dv(1) = hdims[0];
    }
  else
    {
      dv.resize (rank);
      for (hsize_t i = 0, j = rank - 1; i < rank; i++, j--)
        dv(j) = hdims[i];
    }

  octave_idx_type nel = dv.numel ();
  OCTAVE_LOCAL_BUFFER (hbool_t, htmp, nel);
  if (H5Dread (data_hid, H5T_NATIVE_HBOOL, H5S_ALL, H5S_ALL, H5P_DEFAULT, htmp)
      >= 0)
    {
      retval = true;

      boolNDArray btmp (dv);
      for (octave_idx_type i = 0; i < nel; i++)
        btmp.elem (i) = htmp[i];

      matrix = btmp;
    }

  H5Dclose (data_hid);

#else
  gripe_load ("hdf5");
#endif

  return retval;
}

mxArray *
octave_bool_matrix::as_mxArray (void) const
{
  mxArray *retval = new mxArray (mxLOGICAL_CLASS, dims (), mxREAL);

  bool *pr = static_cast<bool *> (retval->get_data ());

  mwSize nel = numel ();

  const bool *p = matrix.data ();

  for (mwIndex i = 0; i < nel; i++)
    pr[i] = p[i];

  return retval;
}

DEFUN (logical, args, ,
       "-*- texinfo -*-\n\
@deftypefn {Built-in Function} {} logical (@var{x})\n\
Convert the numeric object @var{x} to logical type.\n\
\n\
Any nonzero values will be converted to true (1) while zero values will be\n\
converted to false (0).  The non-numeric value NaN cannot be converted and\n\
will produce an error.\n\
\n\
Compatibility Note: Octave accepts complex values as input, whereas\n\
@sc{matlab} issues an error.\n\
@seealso{double, single, char}\n\
@end deftypefn")
{
  octave_value retval;

  if (args.length () == 1)
    {
      octave_value arg = args(0);
      if (arg.is_bool_type ())
        retval = arg;
      else if (arg.is_numeric_type ())
        {
          if (arg.is_sparse_type ())
            retval = arg.sparse_bool_matrix_value ();
          else if (arg.is_scalar_type ())
            retval = arg.bool_value ();
          else
            retval = arg.bool_array_value ();
        }
      else
        gripe_wrong_type_arg ("logical", arg);
    }
  else
    print_usage ();

  return retval;
}

/*
%!test
%! m = eye (2) != 0;
%! s = !0;
%! c = {"double", "single", "int8", "int16", "int32", "int64", "uint8", "uint16", "uint32", "uint64", "logical"};
%! for i = 1:numel (c)
%!   assert (logical (eye (2, c{i})), m)
%!   assert (logical (eye (1, c{i})), s)
%! endfor
*/