This file is indexed.

/usr/include/octave-4.0.3/octave/dim-vector.h is in liboctave-dev 4.0.3-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
/*

Copyright (C) 2003-2015 John W. Eaton
Copyirght (C) 2009, 2010 VZLU Prague

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#if !defined (octave_dim_vector_h)
#define octave_dim_vector_h 1

#include <cassert>
#include <limits>

#include <sstream>
#include <string>

#include "lo-error.h"
#include "lo-macros.h"
#include "oct-refcount.h"

// Rationale: This implementation is more tricky than Array, but the
// big plus is that dim_vector requires only one allocation instead of
// two.  It is (slightly) patterned after GCC's basic_string
// implementation.  rep is a pointer to an array of memory, comprising
// count, length, and the data:
//
//          <count>
//          <ndims>
//  rep --> <dims[0]>
//          <dims[1]>
//          ...
//
// The inlines count(), ndims() recover this data from the rep.  Note
// that rep points to the beginning of dims to grant faster access
// (reinterpret_cast is assumed to be an inexpensive operation).

class
OCTAVE_API
dim_vector
{
private:

  octave_idx_type *rep;

  octave_idx_type& ndims (void) const { return rep[-1]; }

  octave_idx_type& count (void) const { return rep[-2]; }

  //! Construct a new rep with count = 1 and ndims given.

  static octave_idx_type *newrep (int ndims)
  {
    octave_idx_type *r = new octave_idx_type [ndims + 2];

    *r++ = 1;
    *r++ = ndims;

    return r;
  }

  //! Clone this->rep.

  octave_idx_type *clonerep (void)
  {
    int l = ndims ();

    octave_idx_type *r = new octave_idx_type [l + 2];

    *r++ = 1;
    *r++ = l;

    for (int i = 0; i < l; i++)
      r[i] = rep[i];

    return r;
  }

  //! Clone and resize this->rep to length n, filling by given value.

  octave_idx_type *resizerep (int n, octave_idx_type fill_value)
  {
    int l = ndims ();

    if (n < 2)
      n = 2;

    octave_idx_type *r = new octave_idx_type [n + 2];

    *r++ = 1;
    *r++ = n;

    if (l > n)
      l = n;

    int j;
    for (j = 0; j < l; j++)
      r[j] = rep[j];
    for (; j < n; j++)
      r[j] = fill_value;

    return r;
  }

  //! Free the rep.

  void freerep (void)
  {
    assert (count () == 0);
    delete [] (rep - 2);
  }

  void make_unique (void)
  {
    if (count () > 1)
      {
        octave_idx_type *new_rep = clonerep ();

        if (OCTREFCOUNT_ATOMIC_DECREMENT(&(count())) == 0)
          freerep ();

        rep = new_rep;
      }
  }

public:

// There are constructors for up to 7 dimensions initialized this way.
// More can be added if necessary.
#define ASSIGN_REP(i) rep[i] = d ## i;
#define DIM_VECTOR_CTOR(N) \
  dim_vector (OCT_MAKE_DECL_LIST (octave_idx_type, d, N)) \
    : rep (newrep (N)) \
  { \
    OCT_ITERATE_MACRO (ASSIGN_REP, N) \
  }

  //! Construct dim_vector for 2 dimensional array.
  /*!
    It can be used to construct a 2D array.  Example:

    @code{.cc}
    dim_vector dv (7, 5);
    Matrix mat (dv);
    @endcode

    The constructed dim_vector @c dv will have two elements, @f$[7, 5]@f$,
    one for each dimension.  It can then be used to construct a Matrix
    with such dimensions, i.e., 7 rows and 5 columns.

    There are constructors available for up to 7 dimensions.  For a higher
    number of dimensions, use redim() or resize().

    Note that that there is no constructor for a 1 element dim_vector.
    This is because there are no 1 dimensional Array in liboctave.  Such
    constructor did exist in liboctave but was removed in version 4.0.0
    due to its potential for confusion.
  */
  DIM_VECTOR_CTOR (2)

  //! Construct dim_vector for 3 dimensional array.
  /*!
    It can be used to construct a 3D array.  Example:

    @code{.cc}
    NDArray A (dim_vector (7, 5, 4));
    @endcode

    This will construct a 3 dimensional NDArray of lengths 7, 5, and 4,
    on the first, second, and third dimension (rows, columns, and pages)
    respectively.
  */
  DIM_VECTOR_CTOR (3)

  //! Construct dim_vector for 4 dimensional array.
  //! @see dim_vector(octave_idx_type d0, octave_idx_type d1)
  DIM_VECTOR_CTOR (4)
  //! Construct dim_vector for 5 dimensional array.
  //! @see dim_vector(octave_idx_type d0, octave_idx_type d1)
  DIM_VECTOR_CTOR (5)
  //! Construct dim_vector for 6 dimensional array.
  //! @see dim_vector(octave_idx_type d0, octave_idx_type d1)
  DIM_VECTOR_CTOR (6)
  //! Construct dim_vector for 7 dimensional array.
  //! @see dim_vector(octave_idx_type d0, octave_idx_type d1)
  DIM_VECTOR_CTOR (7)

#undef ASSIGN_REP
#undef DIM_VECTOR_CTOR

  octave_idx_type& elem (int i)
  {
#ifdef BOUNDS_CHECKING
    assert (i >= 0 && i < ndims ());
#endif
    make_unique ();
    return rep[i];
  }

  octave_idx_type elem (int i) const
  {
#ifdef BOUNDS_CHECKING
    assert (i >= 0 && i < ndims ());
#endif
    return rep[i];
  }

  void chop_trailing_singletons (void)
  {
    int l = ndims ();
    if (l > 2 && rep[l-1] == 1)
      {
        make_unique ();
        do
          l--;
        while (l > 2 && rep[l-1] == 1);
        ndims () = l;
      }
  }

  void chop_all_singletons (void);

  // WARNING: Only call by jit
  octave_idx_type *to_jit (void) const
  {
    return rep;
  }

private:

  static octave_idx_type *nil_rep (void);

public:

  static octave_idx_type dim_max (void);

  explicit dim_vector (void) : rep (nil_rep ())
  { OCTREFCOUNT_ATOMIC_INCREMENT (&(count())); }

  dim_vector (const dim_vector& dv) : rep (dv.rep)
  { OCTREFCOUNT_ATOMIC_INCREMENT (&(count())); }

  // FIXME: Should be private, but required by array constructor for jit
  explicit dim_vector (octave_idx_type *r) : rep (r) { }

  static dim_vector alloc (int n)
  {
    return dim_vector (newrep (n < 2 ? 2 : n));
  }

  dim_vector& operator = (const dim_vector& dv)
  {
    if (&dv != this)
      {
        if (OCTREFCOUNT_ATOMIC_DECREMENT (&(count())) == 0)
          freerep ();

        rep = dv.rep;
        OCTREFCOUNT_ATOMIC_INCREMENT (&(count()));
      }

    return *this;
  }

  ~dim_vector (void)
  {
    if (OCTREFCOUNT_ATOMIC_DECREMENT (&(count())) == 0)
      freerep ();
  }

  int length (void) const { return ndims (); }

  octave_idx_type& operator () (int i) { return elem (i); }

  octave_idx_type operator () (int i) const { return elem (i); }

  void resize (int n, int fill_value = 0)
  {
    int len = length ();

    if (n != len)
      {
        octave_idx_type *r = resizerep (n, fill_value);

        if (OCTREFCOUNT_ATOMIC_DECREMENT (&(count())) == 0)
          freerep ();

        rep = r;
      }
  }

  std::string str (char sep = 'x') const;

  bool all_zero (void) const
  {
    bool retval = true;

    for (int i = 0; i < length (); i++)
      {
        if (elem (i) != 0)
          {
            retval = false;
            break;
          }
      }

    return retval;
  }

  bool empty_2d (void) const
  {
    return length () == 2 && (elem (0) == 0 || elem (1) == 0);
  }


  bool zero_by_zero (void) const
  {
    return length () == 2 && elem (0) == 0 && elem (1) == 0;
  }

  bool any_zero (void) const
  {
    bool retval = false;

    for (int i = 0; i < length (); i++)
      {
        if (elem (i) == 0)
          {
            retval = true;
            break;
          }
      }

    return retval;
  }

  int num_ones (void) const;

  bool all_ones (void) const
  {
    return (num_ones () == length ());
  }

  //! Number of elements that a matrix with this dimensions would have.
  /*!
     Return the number of elements that a matrix with this dimension
     vector would have, NOT the number of dimensions (elements in the
     dimension vector).
  */

  octave_idx_type numel (int n = 0) const
  {
    int n_dims = length ();

    octave_idx_type retval = 1;

    for (int i = n; i < n_dims; i++)
      retval *= elem (i);

    return retval;
  }

  /*!
     The following function will throw a std::bad_alloc ()
     exception if the requested size is larger than can be indexed by
     octave_idx_type. This may be smaller than the actual amount of
     memory that can be safely allocated on a system.  However, if we
     don't fail here, we can end up with a mysterious crash inside a
     function that is iterating over an array using octave_idx_type
     indices.
  */

  octave_idx_type safe_numel (void) const;

  bool any_neg (void) const
  {
    int n_dims = length ();
    int i;

    for (i = 0; i < n_dims; i++)
      if (elem (i) < 0)
        break;

    return i < n_dims;
  }

  dim_vector squeeze (void) const;

  //! This corresponds to cat().
  bool concat (const dim_vector& dvb, int dim);

  //! This corresponds to [,] (horzcat, dim = 0) and [;] (vertcat, dim = 1).
  // The rules are more relaxed here.
  bool hvcat (const dim_vector& dvb, int dim);

  /*!
      Force certain dimensionality, preserving numel ().  Missing
      dimensions are set to 1, redundant are folded into the trailing
      one.  If n = 1, the result is 2d and the second dim is 1
      (dim_vectors are always at least 2D).
  */
  dim_vector redim (int n) const;

  dim_vector as_column (void) const
  {
    if (length () == 2 && elem (1) == 1)
      return *this;
    else
      return dim_vector (numel (), 1);
  }

  dim_vector as_row (void) const
  {
    if (length () == 2 && elem (0) == 1)
      return *this;
    else
      return dim_vector (1, numel ());
  }

  bool is_vector (void) const
  {
    return (length () == 2 && (elem (0) == 1 || elem (1) == 1));
  }

  int first_non_singleton (int def = 0) const
  {
    for (int i = 0; i < length (); i++)
      {
        if (elem (i) != 1)
          return i;
      }

    return def;
  }

  //! Compute a linear index from an index tuple.

  octave_idx_type compute_index (const octave_idx_type *idx) const
  {
    octave_idx_type k = 0;
    for (int i = length () - 1; i >= 0; i--)
      k = k * rep[i] + idx[i];

    return k;
  }

  //! Ditto, but the tuple may be incomplete (nidx < length ()).

  octave_idx_type compute_index (const octave_idx_type *idx, int nidx) const
  {
    octave_idx_type k = 0;
    for (int i = nidx - 1; i >= 0; i--)
      k = k * rep[i] + idx[i];

    return k;
  }

  /*/!
      Increment a multi-dimensional index tuple, optionally starting
      from an offset position and return the index of the last index
      position that was changed, or length () if just cycled over.
  */

  int increment_index (octave_idx_type *idx, int start = 0) const
  {
    int i;
    for (i = start; i < length (); i++)
      {
        if (++(*idx) == rep[i])
          *idx++ = 0;
        else
          break;
      }
    return i;
  }

  //! Return cumulative dimensions.

  dim_vector cumulative (void) const
  {
    int nd = length ();
    dim_vector retval = alloc (nd);

    octave_idx_type k = 1;
    for (int i = 0; i < nd; i++)
      retval.rep[i] = k *= rep[i];

    return retval;
  }

  //! Compute a linear index from an index tuple.  Dimensions are
  //! required to be cumulative.

  octave_idx_type cum_compute_index (const octave_idx_type *idx) const
  {
    octave_idx_type k = idx[0];

    for (int i = 1; i < length (); i++)
      k += rep[i-1] * idx[i];

    return k;
  }


  friend bool operator == (const dim_vector& a, const dim_vector& b);
};

inline bool
operator == (const dim_vector& a, const dim_vector& b)
{
  // Fast case.
  if (a.rep == b.rep)
    return true;

  bool retval = true;

  int a_len = a.length ();
  int b_len = b.length ();

  if (a_len != b_len)
    retval = false;
  else
    {
      for (int i = 0; i < a_len; i++)
        {
          if (a(i) != b(i))
            {
              retval = false;
              break;
            }
        }
    }

  return retval;
}

inline bool
operator != (const dim_vector& a, const dim_vector& b)
{
  return ! operator == (a, b);
}

#endif