/usr/lib/ocaml/gsl/gsl_linalg.mli is in libocamlgsl-ocaml-dev 1.19.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 | (* gsl-ocaml - OCaml interface to GSL *)
(* Copyright (©) 2002-2012 - Olivier Andrieu *)
(* Distributed under the terms of the GPL version 3 *)
(** Simple linear algebra operations *)
open Gsl_vectmat
open Gsl_complex
(** {3 Simple matrix multiplication} *)
(** [matmult a ~transpa b ~transpb c] stores in matrix [c] the product
of matrices [a] and [b]. [transpa] or [transpb] allow transposition
of either matrix, so it can compute a.b or Trans(a).b or a.Trans(b)
or Trans(a).Trans(b) .
See also {!Gsl.Blas.gemm}. *)
external matmult :
a:mat -> ?transpa:bool ->
b:mat -> ?transpb:bool -> mat -> unit
= "ml_gsl_linalg_matmult_mod"
(** {3 LU decomposition} *)
(** {4 Low-level functions } *)
external _LU_decomp : mat -> Gsl_permut.permut -> int
= "ml_gsl_linalg_LU_decomp"
external _LU_solve : mat -> Gsl_permut.permut -> b:vec -> x:vec -> unit
= "ml_gsl_linalg_LU_solve"
external _LU_svx : mat -> Gsl_permut.permut -> vec -> unit
= "ml_gsl_linalg_LU_svx"
external _LU_refine : a:mat -> lu:mat -> Gsl_permut.permut ->
b:vec -> x:vec -> res:vec -> unit
= "ml_gsl_linalg_LU_refine_bc" "ml_gsl_linalg_LU_refine"
external _LU_invert : mat -> Gsl_permut.permut -> mat -> unit
= "ml_gsl_linalg_LU_invert"
external _LU_det : mat -> int -> float
= "ml_gsl_linalg_LU_det"
external _LU_lndet : mat -> float
= "ml_gsl_linalg_LU_lndet"
external _LU_sgndet : mat -> int -> int
= "ml_gsl_linalg_LU_sgndet"
(** {4 Higher-level functions} *)
(** With these, the arguments are protected (copied) and necessary
intermediate datastructures are allocated; *)
val decomp_LU : ?protect:bool ->
[< `M of Gsl_matrix.matrix
| `MF of Gsl_matrix_flat.matrix
| `A of float array * int * int
| `AA of float array array] -> mat * Gsl_permut.permut * int
val solve_LU : ?protect:bool ->
[< `M of Gsl_matrix.matrix
| `MF of Gsl_matrix_flat.matrix
| `A of float array * int * int
| `AA of float array array] ->
[< `A of float array
| `VF of Gsl_vector_flat.vector
| `V of Gsl_vector.vector] -> float array
val det_LU : ?protect:bool ->
[< `M of Gsl_matrix.matrix
| `MF of Gsl_matrix_flat.matrix
| `A of float array * int * int
| `AA of float array array] -> float
val invert_LU : ?protect:bool ->
?result:mat ->
[< `M of Gsl_matrix.matrix
| `MF of Gsl_matrix_flat.matrix
| `A of float array * int * int
| `AA of float array array] -> mat
(** {3 Complex LU decomposition} *)
external complex_LU_decomp : cmat -> Gsl_permut.permut -> int
= "ml_gsl_linalg_complex_LU_decomp"
external complex_LU_solve : cmat -> Gsl_permut.permut -> b:cvec -> x:cvec -> unit
= "ml_gsl_linalg_complex_LU_solve"
external complex_LU_svx : cmat -> Gsl_permut.permut -> cvec -> unit
= "ml_gsl_linalg_complex_LU_svx"
external complex_LU_refine : a:cmat -> lu:cmat -> Gsl_permut.permut ->
b:cvec -> x:cvec -> res:cvec -> unit
= "ml_gsl_linalg_complex_LU_refine_bc" "ml_gsl_linalg_complex_LU_refine"
external complex_LU_invert : cmat -> Gsl_permut.permut -> cmat -> unit
= "ml_gsl_linalg_complex_LU_invert"
external complex_LU_det : cmat -> int -> complex
= "ml_gsl_linalg_complex_LU_det"
external complex_LU_lndet : cmat -> float
= "ml_gsl_linalg_complex_LU_lndet"
external complex_LU_sgndet : cmat -> int -> complex
= "ml_gsl_linalg_complex_LU_sgndet"
(** {3 QR decomposition} *)
external _QR_decomp : mat -> vec -> unit
= "ml_gsl_linalg_QR_decomp"
external _QR_solve : mat -> vec -> b:vec -> x:vec -> unit
= "ml_gsl_linalg_QR_solve"
external _QR_svx : mat -> vec -> x:vec -> unit
= "ml_gsl_linalg_QR_svx"
external _QR_lssolve : mat -> vec -> b:vec -> x:vec -> res:vec -> unit
= "ml_gsl_linalg_QR_lssolve"
external _QR_QTvec : mat -> vec -> v:vec -> unit
= "ml_gsl_linalg_QR_QTvec"
external _QR_Qvec : mat -> vec -> v:vec -> unit
= "ml_gsl_linalg_QR_Qvec"
external _QR_Rsolve : mat -> b:vec -> x:vec -> unit
= "ml_gsl_linalg_QR_Rsolve"
external _QR_Rsvx : mat -> x:vec -> unit
= "ml_gsl_linalg_QR_Rsvx"
external _QR_unpack : mat -> tau:vec -> q:mat -> r:mat -> unit
= "ml_gsl_linalg_QR_unpack"
external _QR_QRsolve : mat -> r:mat -> b:vec -> x:vec -> unit
= "ml_gsl_linalg_QR_QRsolve"
external _QR_update : mat -> r:mat -> w:vec -> v:vec -> unit
= "ml_gsl_linalg_QR_update"
external _R_solve : r:mat -> b:vec -> x:vec -> unit
= "ml_gsl_linalg_R_solve"
(* external _R_svx : r:mat -> x:vec -> unit*)
(* = "ml_gsl_linalg_R_svx"*)
(** {3 QR Decomposition with Column Pivoting} *)
external _QRPT_decomp : a:mat -> tau:vec -> p:Gsl_permut.permut -> norm:vec -> int
= "ml_gsl_linalg_QRPT_decomp"
external _QRPT_decomp2 : a:mat -> q:mat -> r:mat -> tau:vec -> p:Gsl_permut.permut -> norm:vec -> int
= "ml_gsl_linalg_QRPT_decomp2_bc" "ml_gsl_linalg_QRPT_decomp2"
external _QRPT_solve : qr:mat -> tau:vec -> p:Gsl_permut.permut -> b:vec -> x:vec -> unit
= "ml_gsl_linalg_QRPT_solve"
external _QRPT_svx : qr:mat -> tau:vec -> p:Gsl_permut.permut -> x:vec -> unit
= "ml_gsl_linalg_QRPT_svx"
external _QRPT_QRsolve : q:mat -> r:mat -> p:Gsl_permut.permut -> b:vec -> x:vec -> unit
= "ml_gsl_linalg_QRPT_QRsolve"
external _QRPT_update : q:mat -> r:mat -> p:Gsl_permut.permut -> u:vec -> v:vec -> unit
= "ml_gsl_linalg_QRPT_update"
external _QRPT_Rsolve : qr:mat -> p:Gsl_permut.permut -> b:vec -> x:vec -> unit
= "ml_gsl_linalg_QRPT_Rsolve"
external _QRPT_Rsvx : qr:mat -> p:Gsl_permut.permut -> x:vec -> unit
= "ml_gsl_linalg_QRPT_Rsolve"
(** {3 Singular Value Decomposition} *)
external _SV_decomp : a:mat -> v:mat -> s:vec -> work:vec -> unit
= "ml_gsl_linalg_SV_decomp"
external _SV_decomp_mod : a:mat -> x:mat -> v:mat ->
s:vec -> work:vec -> unit
= "ml_gsl_linalg_SV_decomp_mod"
external _SV_decomp_jacobi : a:mat -> v:mat -> s:vec -> unit
= "ml_gsl_linalg_SV_decomp_jacobi"
external _SV_solve : u:mat -> v:mat -> s:vec -> b:vec -> x:vec -> unit
= "ml_gsl_linalg_SV_solve"
(** {3 LQ decomposition} *)
external _LQ_decomp : a:mat -> tau:vec -> unit = "ml_gsl_linalg_LQ_decomp"
external _LQ_solve_T : lq:mat -> tau:vec -> b:vec -> x:vec -> unit = "ml_gsl_linalg_LQ_solve_T"
external _LQ_svx_T : lq:mat -> tau:vec -> x:vec -> unit = "ml_gsl_linalg_LQ_svx_T"
external _LQ_lssolve_T : lq:mat -> tau:vec -> b:vec -> x:vec -> res:vec -> unit = "ml_gsl_linalg_LQ_lssolve_T"
external _LQ_Lsolve_T : lq:mat -> b:vec -> x:vec -> unit = "ml_gsl_linalg_LQ_Lsolve_T"
external _LQ_Lsvx_T : lq:mat -> x:vec -> unit = "ml_gsl_linalg_LQ_Lsvx_T"
external _L_solve_T : l:mat -> b:vec -> x:vec -> unit = "ml_gsl_linalg_L_solve_T"
external _LQ_vecQ : lq:mat -> tau:vec -> v:vec -> unit = "ml_gsl_linalg_LQ_vecQ"
external _LQ_vecQT : lq:mat -> tau:vec -> v:vec -> unit = "ml_gsl_linalg_LQ_vecQT"
external _LQ_unpack : lq:mat -> tau:vec -> q:mat -> l:mat -> unit = "ml_gsl_linalg_LQ_unpack"
external _LQ_update : q:mat -> r:mat -> v:vec -> w:vec -> unit = "ml_gsl_linalg_LQ_update"
external _LQ_LQsolve : q:mat -> l:mat -> b:vec -> x:vec -> unit = "ml_gsl_linalg_LQ_LQsolve"
(** {3 P^T L Q decomposition} *)
external _PTLQ_decomp : a:mat -> tau:vec -> Gsl_permut.permut -> norm:vec -> int = "ml_gsl_linalg_PTLQ_decomp"
external _PTLQ_decomp2 : a:mat -> q:mat -> r:mat -> tau:vec -> Gsl_permut.permut -> norm:vec -> int = "ml_gsl_linalg_PTLQ_decomp2_bc" "ml_gsl_linalg_PTLQ_decomp2"
external _PTLQ_solve_T : qr:mat -> tau:vec -> Gsl_permut.permut -> b:vec -> x:vec -> unit = "ml_gsl_linalg_PTLQ_solve_T"
external _PTLQ_svx_T : lq:mat -> tau:vec -> Gsl_permut.permut -> x:vec -> unit = "ml_gsl_linalg_PTLQ_svx_T"
external _PTLQ_LQsolve_T : q:mat -> l:mat -> Gsl_permut.permut -> b:vec -> x:vec -> unit = "ml_gsl_linalg_PTLQ_LQsolve_T"
external _PTLQ_Lsolve_T : lq:mat -> Gsl_permut.permut -> b:vec -> x:vec -> unit = "ml_gsl_linalg_PTLQ_Lsolve_T"
external _PTLQ_Lsvx_T : lq:mat -> Gsl_permut.permut -> x:vec -> unit = "ml_gsl_linalg_PTLQ_Lsvx_T"
external _PTLQ_update : q:mat -> l:mat -> Gsl_permut.permut -> v:vec -> w:vec -> unit = "ml_gsl_linalg_PTLQ_update"
(** {3 Cholesky decomposition} *)
external cho_decomp : mat -> unit
= "ml_gsl_linalg_cholesky_decomp"
external cho_solve : mat -> b:vec -> x:vec -> unit
= "ml_gsl_linalg_cholesky_solve"
external cho_svx : mat -> vec -> unit
= "ml_gsl_linalg_cholesky_svx"
external cho_decomp_unit : mat -> vec -> unit
= "ml_gsl_linalg_cholesky_decomp_unit"
(** {3 Tridiagonal Decomposition of Real Symmetric Matrices} *)
external symmtd_decomp : a:mat -> tau:vec -> unit
= "ml_gsl_linalg_symmtd_decomp"
external symmtd_unpack : a:mat -> tau:vec ->
q:mat -> diag:vec -> subdiag:vec -> unit
= "ml_gsl_linalg_symmtd_unpack"
external symmtd_unpack_T : a:mat -> diag:vec -> subdiag:vec -> unit
= "ml_gsl_linalg_symmtd_unpack_T"
(** {3 Tridiagonal Decomposition of Hermitian Matrices} *)
external hermtd_decomp : a:cmat -> tau:cvec -> unit
= "ml_gsl_linalg_hermtd_decomp"
external hermtd_unpack : a:cmat -> tau:cvec ->
q:cmat -> diag:vec -> subdiag:vec -> unit
= "ml_gsl_linalg_hermtd_unpack"
external hermtd_unpack_T : a:cmat -> diag:vec -> subdiag:vec -> unit
= "ml_gsl_linalg_hermtd_unpack_T"
(** {3 Bidiagonalization} *)
external bidiag_decomp : a:mat -> tau_u:vec -> tau_v:vec -> unit
= "ml_gsl_linalg_bidiag_decomp"
external bidiag_unpack : a:mat -> tau_u:vec -> u:mat -> tau_v:vec -> v:mat -> diag:vec -> superdiag:vec -> unit
= "ml_gsl_linalg_bidiag_unpack_bc" "ml_gsl_linalg_bidiag_unpack"
external bidiag_unpack2 : a:mat -> tau_u:vec -> tau_v:vec -> v:mat -> unit
= "ml_gsl_linalg_bidiag_unpack2"
external bidiag_unpack_B : a:mat -> diag:vec -> superdiag:vec -> unit
= "ml_gsl_linalg_bidiag_unpack_B"
(** {3 Householder solver} *)
external _HH_solve : mat -> b:vec -> x:vec -> unit
= "ml_gsl_linalg_HH_solve"
external _HH_svx : mat -> vec -> unit
= "ml_gsl_linalg_HH_svx"
val solve_HH : ?protect:bool ->
[< `M of Gsl_matrix.matrix
| `MF of Gsl_matrix_flat.matrix
| `A of float array * int * int
| `AA of float array array] ->
[< `A of float array
| `VF of Gsl_vector_flat.vector
| `V of Gsl_vector.vector] -> float array
(** {3 Tridiagonal Systems} *)
external solve_symm_tridiag : diag:vec -> offdiag:vec -> b:vec -> x:vec -> unit
= "ml_gsl_linalg_solve_symm_tridiag"
external solve_tridiag : diag:vec -> abovediag:vec -> belowdiag:vec -> b:vec -> x:vec -> unit
= "ml_gsl_linalg_solve_tridiag"
external solve_symm_cyc_tridiag : diag:vec -> offdiag:vec -> b:vec -> x:vec -> unit
= "ml_gsl_linalg_solve_symm_cyc_tridiag"
external solve_cyc_tridiag : diag:vec -> abovediag:vec -> belowdiag:vec -> b:vec -> x:vec -> unit
= "ml_gsl_linalg_solve_cyc_tridiag"
(** {3 Exponential} *)
external _exponential : mat -> mat -> Gsl_fun.mode -> unit
= "ml_gsl_linalg_exponential_ss"
val exponential : ?mode:Gsl_fun.mode ->
[< `M of Gsl_matrix.matrix
| `MF of Gsl_matrix_flat.matrix
| `A of float array * int * int] -> [ `M of Gsl_matrix.matrix]
|