/usr/include/ns3.26/ns3/propagation-loss-model.h is in libns3-dev 3.26+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 | /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
* Copyright (c) 2005,2006,2007 INRIA
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Author: Mathieu Lacage <mathieu.lacage@sophia.inria.fr>
* Contributions: Timo Bingmann <timo.bingmann@student.kit.edu>
* Contributions: Gary Pei <guangyu.pei@boeing.com> for fixed RSS
* Contributions: Tom Hewer <tomhewer@mac.com> for two ray ground model
* Pavel Boyko <boyko@iitp.ru> for matrix
*/
#ifndef PROPAGATION_LOSS_MODEL_H
#define PROPAGATION_LOSS_MODEL_H
#include "ns3/object.h"
#include "ns3/random-variable-stream.h"
#include <map>
namespace ns3 {
/**
* \defgroup propagation Propagation Models
*
*/
class MobilityModel;
/**
* \ingroup propagation
*
* \brief Models the propagation loss through a transmission medium
*
* Calculate the receive power (dbm) from a transmit power (dbm)
* and a mobility model for the source and destination positions.
*/
class PropagationLossModel : public Object
{
public:
/**
* Get the type ID.
* \brief Get the type ID.
* \return the object TypeId
*/
static TypeId GetTypeId (void);
PropagationLossModel ();
virtual ~PropagationLossModel ();
/**
* \brief Enables a chain of loss models to act on the signal
* \param next The next PropagationLossModel to add to the chain
*
* This method of chaining propagation loss models only works commutatively
* if the propagation loss of all models in the chain are independent
* of transmit power.
*/
void SetNext (Ptr<PropagationLossModel> next);
/**
* \brief Gets the next PropagationLossModel in the chain of loss models
* that act on the signal.
* \returns The next PropagationLossModel in the chain
*
* This method of chaining propagation loss models only works commutatively
* if the propagation loss of all models in the chain are independent
* of transmit power.
*/
Ptr<PropagationLossModel> GetNext ();
/**
* Returns the Rx Power taking into account all the PropagatinLossModel(s)
* chained to the current one.
*
* \param txPowerDbm current transmission power (in dBm)
* \param a the mobility model of the source
* \param b the mobility model of the destination
* \returns the reception power after adding/multiplying propagation loss (in dBm)
*/
double CalcRxPower (double txPowerDbm,
Ptr<MobilityModel> a,
Ptr<MobilityModel> b) const;
/**
* If this loss model uses objects of type RandomVariableStream,
* set the stream numbers to the integers starting with the offset
* 'stream'. Return the number of streams (possibly zero) that
* have been assigned. If there are PropagationLossModels chained
* together, this method will also assign streams to the
* downstream models.
*
* \param stream
* \return the number of stream indices assigned by this model
*/
int64_t AssignStreams (int64_t stream);
private:
/**
* \brief Copy constructor
*
* Defined and unimplemented to avoid misuse
*/
PropagationLossModel (const PropagationLossModel &);
/**
* \brief Copy constructor
*
* Defined and unimplemented to avoid misuse
* \returns
*/
PropagationLossModel &operator = (const PropagationLossModel &);
/**
* Returns the Rx Power taking into account only the particular
* PropagatinLossModel.
*
* \param txPowerDbm current transmission power (in dBm)
* \param a the mobility model of the source
* \param b the mobility model of the destination
* \returns the reception power after adding/multiplying propagation loss (in dBm)
*/
virtual double DoCalcRxPower (double txPowerDbm,
Ptr<MobilityModel> a,
Ptr<MobilityModel> b) const = 0;
/**
* Subclasses must implement this; those not using random variables
* can return zero
*/
virtual int64_t DoAssignStreams (int64_t stream) = 0;
Ptr<PropagationLossModel> m_next; //!< Next propagation loss model in the list
};
/**
* \ingroup propagation
*
* \brief The propagation loss follows a random distribution.
*/
class RandomPropagationLossModel : public PropagationLossModel
{
public:
/**
* \brief Get the type ID.
* \return the object TypeId
*/
static TypeId GetTypeId (void);
RandomPropagationLossModel ();
virtual ~RandomPropagationLossModel ();
private:
/**
* \brief Copy constructor
*
* Defined and unimplemented to avoid misuse
*/
RandomPropagationLossModel (const RandomPropagationLossModel &);
/**
* \brief Copy constructor
*
* Defined and unimplemented to avoid misuse
* \returns
*/
RandomPropagationLossModel & operator = (const RandomPropagationLossModel &);
virtual double DoCalcRxPower (double txPowerDbm,
Ptr<MobilityModel> a,
Ptr<MobilityModel> b) const;
virtual int64_t DoAssignStreams (int64_t stream);
Ptr<RandomVariableStream> m_variable; //!< random generator
};
/**
* \ingroup propagation
*
* \brief a Friis propagation loss model
*
* The Friis propagation loss model was first described in
* "A Note on a Simple Transmission Formula", by
* "Harald T. Friis".
*
* The original equation was described as:
* \f$ \frac{P_r}{P_t} = \frac{A_r A_t}{d^2\lambda^2} \f$
* with the following equation for the case of an
* isotropic antenna with no heat loss:
* \f$ A_{isotr.} = \frac{\lambda^2}{4\pi} \f$
*
* The final equation becomes:
* \f$ \frac{P_r}{P_t} = \frac{\lambda^2}{(4 \pi d)^2} \f$
*
* Modern extensions to this original equation are:
* \f$ P_r = \frac{P_t G_t G_r \lambda^2}{(4 \pi d)^2 L}\f$
*
* With:
* - \f$ P_r \f$ : reception power (W)
* - \f$ P_t \f$ : transmission power (W)
* - \f$ G_t \f$ : transmission gain (unit-less)
* - \f$ G_r \f$ : reception gain (unit-less)
* - \f$ \lambda \f$ : wavelength (m)
* - \f$ d \f$ : distance (m)
* - \f$ L \f$ : system loss (unit-less)
*
* In the implementation, \f$ \lambda \f$ is calculated as
* \f$ \frac{C}{f} \f$, where \f$ C = 299792458\f$ m/s is the speed of light in
* vacuum, and \f$ f \f$ is the frequency in Hz which can be configured by
* the user via the Frequency attribute.
*
* The Friis model is valid only for propagation in free space within
* the so-called far field region, which can be considered
* approximately as the region for \f$ d > 3 \lambda \f$.
* The model will still return a value for \f$ d < 3 \lambda \f$, as
* doing so (rather than triggering a fatal error) is practical for
* many simulation scenarios. However, we stress that the values
* obtained in such conditions shall not be considered realistic.
*
* Related with this issue, we note that the Friis formula is
* undefined for \f$ d = 0 \f$, and results in
* \f$ P_r > P_t \f$ for \f$ d < \lambda / 2 \sqrt{\pi} \f$.
* Both these conditions occur outside of the far field region, so in
* principle the Friis model shall not be used in these conditions.
* In practice, however, Friis is often used in scenarios where accurate
* propagation modeling is not deemed important, and values of \f$ d =
* 0 \f$ can occur. To allow practical use of the model in such
* scenarios, we have to 1) return some value for \f$ d = 0 \f$, and
* 2) avoid large discontinuities in propagation loss values (which
* could lead to artifacts such as bogus capture effects which are
* much worse than inaccurate propagation loss values). The two issues
* are conflicting, as, according to the Friis formula,
* \f$\lim_{d \to 0 } P_r = +\infty \f$;
* so if, for \f$ d = 0 \f$, we use a fixed loss value, we end up with an infinitely large
* discontinuity, which as we discussed can cause undesirable
* simulation artifacts.
*
* To avoid these artifact, this implementation of the Friis model
* provides an attribute called MinLoss which allows to specify the
* minimum total loss (in dB) returned by the model. This is used in
* such a way that
* \f$ P_r \f$ continuously increases for \f$ d \to 0 \f$, until
* MinLoss is reached, and then stay constant; this allow to
* return a value for \f$ d = 0 \f$ and at the same time avoid
* discontinuities. The model won't be much realistic, but at least
* the simulation artifacts discussed before are avoided. The default value of
* MinLoss is 0 dB, which means that by default the model will return
* \f$ P_r = P_t \f$ for \f$ d <= \lambda / 2 \sqrt{\pi} \f$. We note
* that this value of \f$ d \f$ is outside of the far field
* region, hence the validity of the model in the far field region is
* not affected.
*
*/
class FriisPropagationLossModel : public PropagationLossModel
{
public:
/**
* \brief Get the type ID.
* \return the object TypeId
*/
static TypeId GetTypeId (void);
FriisPropagationLossModel ();
/**
* \param frequency (Hz)
*
* Set the carrier frequency used in the Friis model
* calculation.
*/
void SetFrequency (double frequency);
/**
* \param systemLoss (dimension-less)
*
* Set the system loss used by the Friis propagation model.
*/
void SetSystemLoss (double systemLoss);
/**
* \param minLoss the minimum loss (dB)
*
* no matter how short the distance, the total propagation loss (in
* dB) will always be greater or equal than this value
*/
void SetMinLoss (double minLoss);
/**
* \return the minimum loss.
*/
double GetMinLoss (void) const;
/**
* \returns the current frequency (Hz)
*/
double GetFrequency (void) const;
/**
* \returns the current system loss (dimension-less)
*/
double GetSystemLoss (void) const;
private:
/**
* \brief Copy constructor
*
* Defined and unimplemented to avoid misuse
*/
FriisPropagationLossModel (const FriisPropagationLossModel &);
/**
* \brief Copy constructor
*
* Defined and unimplemented to avoid misuse
* \returns
*/
FriisPropagationLossModel & operator = (const FriisPropagationLossModel &);
virtual double DoCalcRxPower (double txPowerDbm,
Ptr<MobilityModel> a,
Ptr<MobilityModel> b) const;
virtual int64_t DoAssignStreams (int64_t stream);
/**
* Transforms a Dbm value to Watt
* \param dbm the Dbm value
* \return the Watts
*/
double DbmToW (double dbm) const;
/**
* Transforms a Watt value to Dbm
* \param w the Watt value
* \return the Dbm
*/
double DbmFromW (double w) const;
double m_lambda; //!< the carrier wavelength
double m_frequency; //!< the carrier frequency
double m_systemLoss; //!< the system loss
double m_minLoss; //!< the minimum loss
};
/**
* \ingroup propagation
*
* \brief a Two-Ray Ground propagation loss model ported from NS2
*
* Two-ray ground reflection model.
*
* \f$ Pr = \frac{P_t * G_t * G_r * (H_t^2 * H_r^2)}{d^4 * L} \f$
*
* The original equation in Rappaport's book assumes L = 1.
* To be consistent with the free space equation, L is added here.
*
* Ht and Hr are set at the respective nodes z coordinate plus a model parameter
* set via SetHeightAboveZ.
*
* The two-ray model does not give a good result for short distances, due to the
* oscillation caused by constructive and destructive combination of the two
* rays. Instead the Friis free-space model is used for small distances.
*
* The crossover distance, below which Friis is used, is calculated as follows:
*
* \f$ dCross = \frac{(4 * \pi * H_t * H_r)}{\lambda} \f$
*
* In the implementation, \f$ \lambda \f$ is calculated as
* \f$ \frac{C}{f} \f$, where \f$ C = 299792458\f$ m/s is the speed of light in
* vacuum, and \f$ f \f$ is the frequency in Hz which can be configured by
* the user via the Frequency attribute.
*/
class TwoRayGroundPropagationLossModel : public PropagationLossModel
{
public:
/**
* \brief Get the type ID.
* \return the object TypeId
*/
static TypeId GetTypeId (void);
TwoRayGroundPropagationLossModel ();
/**
* \param frequency (Hz)
*
* Set the carrier frequency used in the TwoRayGround model
* calculation.
*/
void SetFrequency (double frequency);
/**
* \param systemLoss (dimension-less)
*
* Set the system loss used by the TwoRayGround propagation model.
*/
void SetSystemLoss (double systemLoss);
/**
* \param minDistance the minimum distance
*
* Below this distance, the txpower is returned
* unmodified as the rxpower.
*/
void SetMinDistance (double minDistance);
/**
* \returns the minimum distance.
*/
double GetMinDistance (void) const;
/**
* \returns the current frequency (Hz)
*/
double GetFrequency (void) const;
/**
* \returns the current system loss (dimension-less)
*/
double GetSystemLoss (void) const;
/**
* \param heightAboveZ the model antenna height above the node's Z coordinate
*
* Set the model antenna height above the node's Z coordinate
*/
void SetHeightAboveZ (double heightAboveZ);
private:
/**
* \brief Copy constructor
*
* Defined and unimplemented to avoid misuse
*/
TwoRayGroundPropagationLossModel (const TwoRayGroundPropagationLossModel &);
/**
* \brief Copy constructor
*
* Defined and unimplemented to avoid misuse
* \returns
*/
TwoRayGroundPropagationLossModel & operator = (const TwoRayGroundPropagationLossModel &);
virtual double DoCalcRxPower (double txPowerDbm,
Ptr<MobilityModel> a,
Ptr<MobilityModel> b) const;
virtual int64_t DoAssignStreams (int64_t stream);
/**
* Transforms a Dbm value to Watt
* \param dbm the Dbm value
* \return the Watts
*/
double DbmToW (double dbm) const;
/**
* Transforms a Watt value to Dbm
* \param w the Watt value
* \return the Dbm
*/
double DbmFromW (double w) const;
double m_lambda; //!< the carrier wavelength
double m_frequency; //!< the carrier frequency
double m_systemLoss; //!< the system loss
double m_minDistance; //!< minimum distance for the model
double m_heightAboveZ; //!< antenna height above the node's Z coordinate
};
/**
* \ingroup propagation
*
* \brief a log distance propagation model.
*
* This model calculates the reception power with a so-called
* log-distance propagation model:
* \f$ L = L_0 + 10 n log_{10}(\frac{d}{d_0})\f$
*
* where:
* - \f$ n \f$ : the path loss distance exponent
* - \f$ d_0 \f$ : reference distance (m)
* - \f$ L_0 \f$ : path loss at reference distance (dB)
* - \f$ d \f$ : distance (m)
* - \f$ L \f$ : path loss (dB)
*
* When the path loss is requested at a distance smaller than
* the reference distance, the tx power is returned.
*
*/
class LogDistancePropagationLossModel : public PropagationLossModel
{
public:
/**
* \brief Get the type ID.
* \return the object TypeId
*/
static TypeId GetTypeId (void);
LogDistancePropagationLossModel ();
/**
* \param n the path loss exponent.
* Set the path loss exponent.
*/
void SetPathLossExponent (double n);
/**
* \returns the current path loss exponent.
*/
double GetPathLossExponent (void) const;
/**
* Set the reference path loss at a given distance
* \param referenceDistance reference distance
* \param referenceLoss reference path loss
*/
void SetReference (double referenceDistance, double referenceLoss);
private:
/**
* \brief Copy constructor
*
* Defined and unimplemented to avoid misuse
*/
LogDistancePropagationLossModel (const LogDistancePropagationLossModel &);
/**
* \brief Copy constructor
*
* Defined and unimplemented to avoid misuse
* \returns
*/
LogDistancePropagationLossModel & operator = (const LogDistancePropagationLossModel &);
virtual double DoCalcRxPower (double txPowerDbm,
Ptr<MobilityModel> a,
Ptr<MobilityModel> b) const;
virtual int64_t DoAssignStreams (int64_t stream);
/**
* Creates a default reference loss model
* \return a default reference loss model
*/
static Ptr<PropagationLossModel> CreateDefaultReference (void);
double m_exponent; //!< model exponent
double m_referenceDistance; //!< reference distance
double m_referenceLoss; //!< reference loss
};
/**
* \ingroup propagation
*
* \brief A log distance path loss propagation model with three distance
* fields. This model is the same as ns3::LogDistancePropagationLossModel
* except that it has three distance fields: near, middle and far with
* different exponents.
*
* Within each field the reception power is calculated using the log-distance
* propagation equation:
* \f[ L = L_0 + 10 \cdot n_0 log_{10}(\frac{d}{d_0})\f]
* Each field begins where the previous ends and all together form a continuous function.
*
* There are three valid distance fields: near, middle, far. Actually four: the
* first from 0 to the reference distance is invalid and returns txPowerDbm.
*
* \f[ \underbrace{0 \cdots\cdots}_{=0} \underbrace{d_0 \cdots\cdots}_{n_0} \underbrace{d_1 \cdots\cdots}_{n_1} \underbrace{d_2 \cdots\cdots}_{n_2} \infty \f]
*
* Complete formula for the path loss in dB:
*
* \f[\displaystyle L =
\begin{cases}
0 & d < d_0 \\
L_0 + 10 \cdot n_0 \log_{10}(\frac{d}{d_0}) & d_0 \leq d < d_1 \\
L_0 + 10 \cdot n_0 \log_{10}(\frac{d_1}{d_0}) + 10 \cdot n_1 \log_{10}(\frac{d}{d_1}) & d_1 \leq d < d_2 \\
L_0 + 10 \cdot n_0 \log_{10}(\frac{d_1}{d_0}) + 10 \cdot n_1 \log_{10}(\frac{d_2}{d_1}) + 10 \cdot n_2 \log_{10}(\frac{d}{d_2})& d_2 \leq d
\end{cases}\f]
*
* where:
* - \f$ L \f$ : resulting path loss (dB)
* - \f$ d \f$ : distance (m)
* - \f$ d_0, d_1, d_2 \f$ : three distance fields (m)
* - \f$ n_0, n_1, n_2 \f$ : path loss distance exponent for each field (unitless)
* - \f$ L_0 \f$ : path loss at reference distance (dB)
*
* When the path loss is requested at a distance smaller than the reference
* distance \f$ d_0 \f$, the tx power (with no path loss) is returned. The
* reference distance defaults to 1m and reference loss defaults to
* ns3::FriisPropagationLossModel with 5.15 GHz and is thus \f$ L_0 \f$ = 46.67 dB.
*/
class ThreeLogDistancePropagationLossModel : public PropagationLossModel
{
public:
/**
* \brief Get the type ID.
* \return the object TypeId
*/
static TypeId GetTypeId (void);
ThreeLogDistancePropagationLossModel ();
// Parameters are all accessible via attributes.
private:
/**
* \brief Copy constructor
*
* Defined and unimplemented to avoid misuse
*/
ThreeLogDistancePropagationLossModel (const ThreeLogDistancePropagationLossModel&);
/**
* \brief Copy constructor
*
* Defined and unimplemented to avoid misuse
* \returns
*/
ThreeLogDistancePropagationLossModel& operator= (const ThreeLogDistancePropagationLossModel&);
virtual double DoCalcRxPower (double txPowerDbm,
Ptr<MobilityModel> a,
Ptr<MobilityModel> b) const;
virtual int64_t DoAssignStreams (int64_t stream);
double m_distance0; //!< Beginning of the first (near) distance field
double m_distance1; //!< Beginning of the second (middle) distance field.
double m_distance2; //!< Beginning of the third (far) distance field.
double m_exponent0; //!< The exponent for the first field.
double m_exponent1; //!< The exponent for the second field.
double m_exponent2; //!< The exponent for the third field.
double m_referenceLoss; //!< The reference loss at distance d0 (dB).
};
/**
* \ingroup propagation
*
* \brief Nakagami-m fast fading propagation loss model.
*
* This propagation loss model implements the Nakagami-m fast fading
* model, which accounts for the variations in signal strength due to multipath
* fading. The model does not account for the path loss due to the
* distance traveled by the signal, hence for typical simulation usage it
* is recommended to consider using it in combination with other models
* that take into account this aspect.
*
* The Nakagami-m distribution is applied to the power level. The probability
* density function is defined as
* \f[ p(x; m, \omega) = \frac{2 m^m}{\Gamma(m) \omega^m} x^{2m - 1} e^{-\frac{m}{\omega} x^2} \f]
* with \f$ m \f$ the fading depth parameter and \f$ \omega \f$ the average received power.
*
* It is implemented by either a ns3::GammaRandomVariable or a
* ns3::ErlangRandomVariable random variable.
*
* The implementation of the model allows to specify different values of the m parameter (and hence different fading profiles)
* for three different distance ranges:
* \f[ \underbrace{0 \cdots\cdots}_{m_0} \underbrace{d_1 \cdots\cdots}_{m_1} \underbrace{d_2 \cdots\cdots}_{m_2} \infty \f]
*
* For m = 1 the Nakagami-m distribution equals the Rayleigh distribution. Thus
* this model also implements Rayleigh distribution based fast fading.
*/
class NakagamiPropagationLossModel : public PropagationLossModel
{
public:
/**
* \brief Get the type ID.
* \return the object TypeId
*/
static TypeId GetTypeId (void);
NakagamiPropagationLossModel ();
// Parameters are all accessible via attributes.
private:
/**
* \brief Copy constructor
*
* Defined and unimplemented to avoid misuse
*/
NakagamiPropagationLossModel (const NakagamiPropagationLossModel&);
/**
* \brief Copy constructor
*
* Defined and unimplemented to avoid misuse
* \returns
*/
NakagamiPropagationLossModel& operator= (const NakagamiPropagationLossModel&);
virtual double DoCalcRxPower (double txPowerDbm,
Ptr<MobilityModel> a,
Ptr<MobilityModel> b) const;
virtual int64_t DoAssignStreams (int64_t stream);
double m_distance1; //!< Distance1
double m_distance2; //!< Distance2
double m_m0; //!< m for distances smaller than Distance1
double m_m1; //!< m for distances smaller than Distance2
double m_m2; //!< m for distances greater than Distance2
Ptr<ErlangRandomVariable> m_erlangRandomVariable; //!< Erlang random variable
Ptr<GammaRandomVariable> m_gammaRandomVariable; //!< Gamma random variable
};
/**
* \ingroup propagation
*
* \brief Return a constant received power level independent of the transmit
* power
*
* The received power is constant independent of the transmit power. The user
* must set received power level through the Rss attribute or public
* SetRss() method. Note that if this loss model is chained to other loss
* models via SetNext() method, it can only be the first loss model in such
* a chain, or else it will disregard the losses computed by loss models
* that precede it in the chain.
*/
class FixedRssLossModel : public PropagationLossModel
{
public:
/**
* \brief Get the type ID.
* \return the object TypeId
*/
static TypeId GetTypeId (void);
FixedRssLossModel ();
virtual ~FixedRssLossModel ();
/**
* \param rss (dBm) the received signal strength
*
* Set the received signal strength (RSS) in dBm.
*/
void SetRss (double rss);
private:
/**
* \brief Copy constructor
*
* Defined and unimplemented to avoid misuse
*/
FixedRssLossModel (const FixedRssLossModel &);
/**
* \brief Copy constructor
*
* Defined and unimplemented to avoid misuse
* \returns
*/
FixedRssLossModel & operator = (const FixedRssLossModel &);
virtual double DoCalcRxPower (double txPowerDbm,
Ptr<MobilityModel> a,
Ptr<MobilityModel> b) const;
virtual int64_t DoAssignStreams (int64_t stream);
double m_rss; //!< the received signal strength
};
/**
* \ingroup propagation
*
* \brief The propagation loss is fixed for each pair of nodes and doesn't depend on their actual positions.
*
* This is supposed to be used by synthetic tests. Note that by default propagation loss is assumed to be symmetric.
*/
class MatrixPropagationLossModel : public PropagationLossModel
{
public:
/**
* \brief Get the type ID.
* \return the object TypeId
*/
static TypeId GetTypeId (void);
MatrixPropagationLossModel ();
virtual ~MatrixPropagationLossModel ();
/**
* \brief Set loss (in dB, positive) between pair of ns-3 objects
* (typically, nodes).
*
* \param a ma Source mobility model
* \param b mb Destination mobility model
* \param loss a -> b path loss, positive in dB
* \param symmetric If true (default), both a->b and b->a paths will be affected
*/
void SetLoss (Ptr<MobilityModel> a, Ptr<MobilityModel> b, double loss, bool symmetric = true);
/**
* Set the default propagation loss (in dB, positive) to be used, infinity if not set
* \param defaultLoss the default proagation loss
*/
void SetDefaultLoss (double defaultLoss);
private:
/**
* \brief Copy constructor
*
* Defined and unimplemented to avoid misuse
*/
MatrixPropagationLossModel (const MatrixPropagationLossModel &);
/**
* \brief Copy constructor
*
* Defined and unimplemented to avoid misuse
* \returns
*/
MatrixPropagationLossModel &operator = (const MatrixPropagationLossModel &);
virtual double DoCalcRxPower (double txPowerDbm,
Ptr<MobilityModel> a,
Ptr<MobilityModel> b) const;
virtual int64_t DoAssignStreams (int64_t stream);
private:
double m_default; //!< default loss
/// Typedef: Mobility models pair
typedef std::pair< Ptr<MobilityModel>, Ptr<MobilityModel> > MobilityPair;
std::map<MobilityPair, double> m_loss; //!< Propagation loss between pair of nodes
};
/**
* \ingroup propagation
*
* \brief The propagation loss depends only on the distance (range) between transmitter and receiver.
*
* The single MaxRange attribute (units of meters) determines path loss.
* Receivers at or within MaxRange meters receive the transmission at the
* transmit power level. Receivers beyond MaxRange receive at power
* -1000 dBm (effectively zero).
*/
class RangePropagationLossModel : public PropagationLossModel
{
public:
/**
* \brief Get the type ID.
* \return the object TypeId
*/
static TypeId GetTypeId (void);
RangePropagationLossModel ();
private:
/**
* \brief Copy constructor
*
* Defined and unimplemented to avoid misuse
*/
RangePropagationLossModel (const RangePropagationLossModel&);
/**
* \brief Copy constructor
*
* Defined and unimplemented to avoid misuse
* \returns
*/
RangePropagationLossModel& operator= (const RangePropagationLossModel&);
virtual double DoCalcRxPower (double txPowerDbm,
Ptr<MobilityModel> a,
Ptr<MobilityModel> b) const;
virtual int64_t DoAssignStreams (int64_t stream);
private:
double m_range; //!< Maximum Transmission Range (meters)
};
} // namespace ns3
#endif /* PROPAGATION_LOSS_MODEL_H */
|