/usr/include/ns3.26/ns3/int64x64-128.h is in libns3-dev 3.26+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 | /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
* Copyright (c) 2010 INRIA
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include "ns3/core-config.h"
#if !defined(INT64X64_128_H) && defined (INT64X64_USE_128) && !defined(PYTHON_SCAN)
#define INT64X64_128_H
#include <stdint.h>
#include <cmath> // pow
#if defined(HAVE___UINT128_T) && !defined(HAVE_UINT128_T)
typedef __uint128_t uint128_t;
typedef __int128_t int128_t;
#endif
/**
* \file
* \ingroup highprec
* Declaration of the ns3::int64x64_t type using a native int128_t type..
*/
namespace ns3 {
/**
* \internal
* The implementation documented here is based on native 128-bit integers.
*/
class int64x64_t
{
/// uint128_t high bit (sign bit).
static const uint128_t HP128_MASK_HI_BIT = (((int128_t)1)<<127);
/// Mask for fraction part.
static const uint64_t HP_MASK_LO = 0xffffffffffffffffULL;
/// Mask for sign + integer part.
static const uint64_t HP_MASK_HI = ~HP_MASK_LO;
/**
* Floating point value of HP_MASK_LO + 1.
* We really want:
* \code
* static const long double HP_MAX_64 = std:pow (2.0L, 64);
* \endcode
* but we can't call functions in const definitions.
*
* We could make this a static and initialize in int64x64-128.cc or
* int64x64.cc, but this requires handling static initialization order
* when most of the implementation is inline. Instead, we resort to
* this define.
*/
#define HP_MAX_64 (std::pow (2.0L, 64))
public:
/**
* Type tag for the underlying implementation.
*
* A few testcases are are sensitive to implementation,
* specifically the double implementation. To handle this,
* we expose the underlying implementation type here.
*/
enum impl_type {
int128_impl, //!< Native \c int128_t implementation.
cairo_impl, //!< Cairo wideint implementation.
ld_impl, //!< `long double` implementation.
};
/// Type tag for this implementation.
static const enum impl_type implementation = int128_impl;
/// Default constructor.
inline int64x64_t ()
: _v (0) {}
/**
* \name Construct from a floating point value.
*
* \param [in] value Floating value to represent.
*/
/**@{*/
inline int64x64_t (const double value)
{
const int64x64_t tmp ((long double)value);
_v = tmp._v;
}
inline int64x64_t (const long double value)
{
const bool negative = value < 0;
const long double v = negative ? -value : value;
long double fhi;
long double flo = std::modf (v, &fhi);
// Add 0.5 to round, which improves the last count
// This breaks these tests:
// TestSuite devices-mesh-dot11s-regression
// TestSuite devices-mesh-flame-regression
// TestSuite routing-aodv-regression
// TestSuite routing-olsr-regression
// Setting round = 0; breaks:
// TestSuite int64x64
const long double round = 0.5;
flo = flo * HP_MAX_64 + round;
int128_t hi = fhi;
const uint64_t lo = flo;
if (flo >= HP_MAX_64)
{
// conversion to uint64 rolled over
++hi;
}
_v = hi << 64;
_v |= lo;
_v = negative ? -_v : _v;
}
/**@}*/
/**
* \name Construct from an integral type.
*
* \param [in] v Integer value to represent.
*/
/**@{*/
inline int64x64_t (const int v)
: _v (v)
{
_v <<= 64;
}
inline int64x64_t (const long int v)
: _v (v)
{
_v <<= 64;
}
inline int64x64_t (const long long int v)
: _v (v)
{
_v <<= 64;
}
inline int64x64_t (const unsigned int v)
: _v (v)
{
_v <<= 64;
}
inline int64x64_t (const unsigned long int v)
: _v (v)
{
_v <<= 64;
}
inline int64x64_t (const unsigned long long int v)
: _v (v)
{
_v <<= 64;
}
/**@}*/
/**
* Construct from explicit high and low values.
*
* \param [in] hi Integer portion.
* \param [in] lo Fractional portion, already scaled to HP_MAX_64.
*/
explicit inline int64x64_t (const int64_t hi, const uint64_t lo)
{
_v = (int128_t)hi << 64;
_v |= lo;
}
/**
* Copy constructor.
*
* \param [in] o Value to copy.
*/
inline int64x64_t (const int64x64_t & o)
: _v (o._v) {}
/**
* Assignment.
*
* \param [in] o Value to assign to this int64x64_t.
* \returns This int64x64_t.
*/
inline int64x64_t & operator = (const int64x64_t & o)
{
_v = o._v;
return *this;
}
/**
* Get this value as a double.
*
* \return This value in floating form.
*/
inline double GetDouble (void) const
{
const bool negative = _v < 0;
const uint128_t value = negative ? -_v : _v;
const long double fhi = value >> 64;
const long double flo = (value & HP_MASK_LO) / HP_MAX_64;
long double retval = fhi;
retval += flo;
retval = negative ? -retval : retval;
return retval;
}
/**
* Get the integer portion.
*
* \return The integer portion of this value.
*/
inline int64_t GetHigh (void) const
{
const int128_t retval = _v >> 64;
return retval;
}
/**
* Get the fractional portion of this value, unscaled.
*
* \return The fractional portion, unscaled, as an integer.
*/
inline uint64_t GetLow (void) const
{
const uint128_t retval = _v & HP_MASK_LO;
return retval;
}
/**
* Multiply this value by a Q0.128 value, presumably representing an inverse,
* completing a division operation.
*
* \param [in] o The inverse operand.
*
* \see Invert()
*/
void MulByInvert (const int64x64_t & o);
/**
* Compute the inverse of an integer value.
*
* Ordinary division by an integer would be limited to 64 bits of precsion.
* Instead, we multiply by the 128-bit inverse of the divisor.
* This function computes the inverse to 128-bit precision.
* MulByInvert() then completes the division.
*
* (Really this should be a separate type representing Q0.128.)
*
* \param [in] v The value to compute the inverse of.
* \return A Q0.128 representation of the inverse.
*/
static int64x64_t Invert (const uint64_t v);
private:
friend bool operator == (const int64x64_t & lhs, const int64x64_t & rhs);
friend bool operator < (const int64x64_t & lhs, const int64x64_t & rhs);
friend bool operator > (const int64x64_t & lhs, const int64x64_t & rhs);
friend int64x64_t & operator += ( int64x64_t & lhs, const int64x64_t & rhs);
friend int64x64_t & operator -= ( int64x64_t & lhs, const int64x64_t & rhs);
friend int64x64_t & operator *= ( int64x64_t & lhs, const int64x64_t & rhs);
friend int64x64_t & operator /= ( int64x64_t & lhs, const int64x64_t & rhs);
friend int64x64_t operator - (const int64x64_t & lhs);
friend int64x64_t operator ! (const int64x64_t & lhs);
/**
* Implement `*=`.
*
* \param [in] o The other factor.
*/
void Mul (const int64x64_t & o);
/**
* Implement `/=`.
*
* \param [in] o The divisor.
*/
void Div (const int64x64_t & o);
/**
* Unsigned multiplication of Q64.64 values.
*
* Mathematically this should produce a Q128.128 value;
* we keep the central 128 bits, representing the Q64.64 result.
* We assert on integer overflow beyond the 64-bit integer portion.
*
* \param [in] a First factor.
* \param [in] b Second factor.
* \return The Q64.64 product.
*
* \internal
*
* It might be tempting to just use \pname{a} `*` \pname{b}
* and be done with it, but it's not that simple. With \pname{a}
* and \pname{b} as 128-bit integers, \pname{a} `*` \pname{b}
* mathematically produces a 256-bit result, which the computer
* truncates to the lowest 128 bits. In our case, where \pname{a}
* and \pname{b} are interpreted as Q64.64 fixed point numbers,
* the multiplication mathematically produces a Q128.128 fixed point number.
* We want the middle 128 bits from the result, truncating both the
* high and low 64 bits. To achieve this, we carry out the multiplication
* explicitly with 64-bit operands and 128-bit intermediate results.
*/
static uint128_t Umul (const uint128_t a, const uint128_t b);
/**
* Unsigned division of Q64.64 values.
*
* \param [in] a Numerator.
* \param [in] b Denominator.
* \return The Q64.64 representation of `a / b`.
*/
static uint128_t Udiv (const uint128_t a, const uint128_t b);
/**
* Unsigned multiplication of Q64.64 and Q0.128 values.
*
* \param [in] a The numerator, a Q64.64 value.
* \param [in] b The inverse of the denominator, a Q0.128 value
* \return The product `a * b`, representing the ration `a / b^-1`.
*
* \see Invert()
*/
static uint128_t UmulByInvert (const uint128_t a, const uint128_t b);
/**
* Construct from an integral type.
*
* \param [in] v Integer value to represent.
*/
inline int64x64_t (const int128_t v)
: _v (v) {}
int128_t _v; //!< The Q64.64 value.
}; // class int64x64_t
/**
* \ingroup highprec
* Equality operator.
*/
inline bool operator == (const int64x64_t & lhs, const int64x64_t & rhs)
{
return lhs._v == rhs._v;
}
/**
* \ingroup highprec
* Less than operator.
*/
inline bool operator < (const int64x64_t & lhs, const int64x64_t & rhs)
{
return lhs._v < rhs._v;
}
/**
* \ingroup highprec
* Greater operator.
*/
inline bool operator > (const int64x64_t & lhs, const int64x64_t & rhs)
{
return lhs._v > rhs._v;
}
/**
* \ingroup highprec
* Compound addition operator.
*/
inline int64x64_t & operator += (int64x64_t & lhs, const int64x64_t & rhs)
{
lhs._v += rhs._v;
return lhs;
}
/**
* \ingroup highprec
* Compound subtraction operator.
*/
inline int64x64_t & operator -= (int64x64_t & lhs, const int64x64_t & rhs)
{
lhs._v -= rhs._v;
return lhs;
}
/**
* \ingroup highprec
* Compound multiplication operator.
*/
inline int64x64_t & operator *= (int64x64_t & lhs, const int64x64_t & rhs)
{
lhs.Mul (rhs);
return lhs;
}
/**
* \ingroup highprec
* Compound division operator.
*/
inline int64x64_t & operator /= (int64x64_t & lhs, const int64x64_t & rhs)
{
lhs.Div (rhs);
return lhs;
}
/**
* \ingroup highprec
* Unary plus operator.
*/
inline int64x64_t operator + (const int64x64_t & lhs)
{
return lhs;
}
/**
* \ingroup highprec
* Unary negation operator (change sign operator).
*/
inline int64x64_t operator - (const int64x64_t & lhs)
{
return int64x64_t (-lhs._v);
}
/**
* \ingroup highprec
* Logical not operator.
*/
inline int64x64_t operator ! (const int64x64_t & lhs)
{
return int64x64_t (!lhs._v);
}
} // namespace ns3
#endif /* INT64X64_128_H */
|