This file is indexed.

/usr/include/ns3.26/ns3/int64x64-128.h is in libns3-dev 3.26+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
 * Copyright (c) 2010 INRIA
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation;
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */

#include "ns3/core-config.h"

#if !defined(INT64X64_128_H) && defined (INT64X64_USE_128) && !defined(PYTHON_SCAN)
#define INT64X64_128_H

#include <stdint.h>
#include <cmath>  // pow

#if defined(HAVE___UINT128_T) && !defined(HAVE_UINT128_T)
typedef __uint128_t uint128_t;
typedef __int128_t int128_t;
#endif

/**
 * \file
 * \ingroup highprec
 * Declaration of the ns3::int64x64_t type using a native int128_t type..
 */

namespace ns3 {

/**
 * \internal
 * The implementation documented here is based on native 128-bit integers.
 */
class int64x64_t
{
  /// uint128_t high bit (sign bit).
  static const uint128_t   HP128_MASK_HI_BIT = (((int128_t)1)<<127);
  /// Mask for fraction part.
  static const uint64_t    HP_MASK_LO = 0xffffffffffffffffULL;
  /// Mask for sign + integer part.
  static const uint64_t    HP_MASK_HI = ~HP_MASK_LO;
  /**
   * Floating point value of HP_MASK_LO + 1.
   * We really want:
   * \code
   *   static const long double HP_MAX_64 = std:pow (2.0L, 64);
   * \endcode
   * but we can't call functions in const definitions.
   *
   * We could make this a static and initialize in int64x64-128.cc or
   * int64x64.cc, but this requires handling static initialization order
   * when most of the implementation is inline.  Instead, we resort to
   * this define.
   */
#define HP_MAX_64    (std::pow (2.0L, 64))

public:
  /**
   * Type tag for the underlying implementation.
   *
   * A few testcases are are sensitive to implementation,
   * specifically the double implementation.  To handle this,
   * we expose the underlying implementation type here.
   */
  enum impl_type {
    int128_impl,  //!< Native \c int128_t implementation.
    cairo_impl,   //!< Cairo wideint implementation.
    ld_impl,      //!< `long double` implementation.
  };

  /// Type tag for this implementation.
  static const enum impl_type implementation = int128_impl;

  /// Default constructor.
  inline int64x64_t ()
    : _v (0)  {}
  /**
   * \name Construct from a floating point value.
   *
   * \param [in] value Floating value to represent.
   */
  /**@{*/
  inline int64x64_t (const double value)
  {
    const int64x64_t tmp ((long double)value);
    _v = tmp._v;
  }
  inline int64x64_t (const long double value)
  {
    const bool negative = value < 0;
    const long double v = negative ? -value : value;

    long double fhi;
    long double flo = std::modf (v, &fhi);
    // Add 0.5 to round, which improves the last count
    // This breaks these tests:
    //   TestSuite devices-mesh-dot11s-regression
    //   TestSuite devices-mesh-flame-regression
    //   TestSuite routing-aodv-regression
    //   TestSuite routing-olsr-regression
    // Setting round = 0; breaks:
    //   TestSuite int64x64
    const long double round = 0.5;
    flo = flo * HP_MAX_64 + round;
    int128_t hi = fhi;
    const uint64_t lo = flo;
    if (flo >= HP_MAX_64)
      {
	// conversion to uint64 rolled over
	++hi;
      }
    _v = hi << 64;
    _v |= lo;
    _v = negative ? -_v : _v;
  }
  /**@}*/

  /**
   * \name Construct from an integral type.
   *
   * \param [in] v Integer value to represent.
   */
  /**@{*/
  inline int64x64_t (const int v)
    : _v (v)
  {
    _v <<= 64;
  }
  inline int64x64_t (const long int v)
    : _v (v) 
  {
    _v <<= 64;
  }
  inline int64x64_t (const long long int v)
    : _v (v) 
  {
    _v <<= 64;
  }
  inline int64x64_t (const unsigned int v)
    : _v (v)
  {
    _v <<= 64;
  }
  inline int64x64_t (const unsigned long int v)
    : _v (v) 
  {
    _v <<= 64;
  }
  inline int64x64_t (const unsigned long long int v)
    : _v (v) 
  {
    _v <<= 64;
  }
  /**@}*/
  
  /**
   * Construct from explicit high and low values.
   *
   * \param [in] hi Integer portion.
   * \param [in] lo Fractional portion, already scaled to HP_MAX_64.
   */
  explicit inline int64x64_t (const int64_t hi, const uint64_t lo)
  {
    _v = (int128_t)hi << 64;
    _v |= lo;
  }

  /**
   * Copy constructor.
   *
   * \param [in] o Value to copy.
   */
  inline int64x64_t (const int64x64_t & o)
    : _v (o._v) {}
  /**
   * Assignment.
   *
   * \param [in] o Value to assign to this int64x64_t.
   * \returns This int64x64_t.
   */
  inline int64x64_t & operator = (const int64x64_t & o)
  {
    _v = o._v;
    return *this;
  }

  /**
   * Get this value as a double.
   *
   * \return This value in floating form.
   */
  inline double GetDouble (void) const
  {
    const bool negative = _v < 0;
    const uint128_t value = negative ? -_v : _v;
    const long double fhi = value >> 64;
    const long double flo = (value & HP_MASK_LO) / HP_MAX_64;
    long double retval = fhi;
    retval += flo;
    retval = negative ? -retval : retval;
    return retval;
  }
  /**
   * Get the integer portion.
   *
   * \return The integer portion of this value.
   */
  inline int64_t GetHigh (void) const
  {
    const int128_t retval = _v >> 64;
    return retval;
  }
  /**
   * Get the fractional portion of this value, unscaled.
   *
   * \return The fractional portion, unscaled, as an integer.
   */
  inline uint64_t GetLow (void) const
  {
    const uint128_t retval = _v & HP_MASK_LO;
    return retval;
  }

  /**
   * Multiply this value by a Q0.128 value, presumably representing an inverse,
   * completing a division operation.
   *
   * \param [in] o The inverse operand.
   *
   * \see Invert()
   */
  void MulByInvert (const int64x64_t & o);

  /**
   * Compute the inverse of an integer value.
   *
   * Ordinary division by an integer would be limited to 64 bits of precsion.
   * Instead, we multiply by the 128-bit inverse of the divisor.
   * This function computes the inverse to 128-bit precision.
   * MulByInvert() then completes the division.
   *
   * (Really this should be a separate type representing Q0.128.)
   *
   * \param [in] v The value to compute the inverse of.
   * \return A Q0.128 representation of the inverse.
   */
  static int64x64_t Invert (const uint64_t v);

private:

  friend bool         operator == (const int64x64_t & lhs, const int64x64_t & rhs);

  friend bool         operator <  (const int64x64_t & lhs, const int64x64_t & rhs);
  friend bool         operator >  (const int64x64_t & lhs, const int64x64_t & rhs);
  
  friend int64x64_t & operator += (      int64x64_t & lhs, const int64x64_t & rhs);
  friend int64x64_t & operator -= (      int64x64_t & lhs, const int64x64_t & rhs);
  friend int64x64_t & operator *= (      int64x64_t & lhs, const int64x64_t & rhs);
  friend int64x64_t & operator /= (      int64x64_t & lhs, const int64x64_t & rhs);

  friend int64x64_t   operator -  (const int64x64_t & lhs);
  friend int64x64_t   operator !  (const int64x64_t & lhs);

  /**
   * Implement `*=`.
   *
   * \param [in] o The other factor.
   */   
  void Mul (const int64x64_t & o);
  /**
   * Implement `/=`.
   *
   * \param [in] o The divisor.
   */
  void Div (const int64x64_t & o);
  /**
   * Unsigned multiplication of Q64.64 values.
   *
   * Mathematically this should produce a Q128.128 value;
   * we keep the central 128 bits, representing the Q64.64 result.
   * We assert on integer overflow beyond the 64-bit integer portion.
   *
   * \param [in] a First factor.
   * \param [in] b Second factor.
   * \return The Q64.64 product.
   *
   * \internal
   *
   * It might be tempting to just use \pname{a} `*` \pname{b}
   * and be done with it, but it's not that simple.  With \pname{a}
   * and \pname{b} as 128-bit integers, \pname{a} `*` \pname{b}
   * mathematically produces a 256-bit result, which the computer
   * truncates to the lowest 128 bits.  In our case, where \pname{a}
   * and \pname{b} are interpreted as Q64.64 fixed point numbers,
   * the multiplication mathematically produces a Q128.128 fixed point number.
   * We want the middle 128 bits from the result, truncating both the
   * high and low 64 bits.  To achieve this, we carry out the multiplication
   * explicitly with 64-bit operands and 128-bit intermediate results.
   */
  static uint128_t Umul         (const uint128_t a, const uint128_t b);
  /**
   * Unsigned division of Q64.64 values.
   *
   * \param [in] a Numerator.
   * \param [in] b Denominator.
   * \return The Q64.64 representation of `a / b`.
   */
  static uint128_t Udiv         (const uint128_t a, const uint128_t b);
  /**
   * Unsigned multiplication of Q64.64 and Q0.128 values.
   *
   * \param [in] a The numerator, a Q64.64 value.
   * \param [in] b The inverse of the denominator, a Q0.128 value
   * \return The product `a * b`, representing the ration `a / b^-1`.
   *
   * \see Invert()
   */
  static uint128_t UmulByInvert (const uint128_t a, const uint128_t b);

  /**
   * Construct from an integral type.
   *
   * \param [in] v Integer value to represent.
   */
  inline int64x64_t (const int128_t v)
    : _v (v) {}

  int128_t _v;  //!< The Q64.64 value.

};  // class int64x64_t


/**
 * \ingroup highprec
 * Equality operator.
 */
inline bool operator == (const int64x64_t & lhs, const int64x64_t & rhs)
{
  return lhs._v == rhs._v;
}
/**
 * \ingroup highprec
 * Less than operator.
 */
inline bool operator < (const int64x64_t & lhs, const int64x64_t & rhs)
{
  return lhs._v < rhs._v;
}
/**
 * \ingroup highprec
 * Greater operator.
 */
inline bool operator > (const int64x64_t & lhs, const int64x64_t & rhs)
{
  return lhs._v > rhs._v;
}

/**
 * \ingroup highprec
 * Compound addition operator.
 */
inline int64x64_t & operator += (int64x64_t & lhs, const int64x64_t & rhs)
{
  lhs._v += rhs._v;
  return lhs;
}
/**
 * \ingroup highprec
 * Compound subtraction operator.
 */
inline int64x64_t & operator -= (int64x64_t & lhs, const int64x64_t & rhs)
{
  lhs._v -= rhs._v;
  return lhs;
}
/**
 * \ingroup highprec
 * Compound multiplication operator.
 */
inline int64x64_t & operator *= (int64x64_t & lhs, const int64x64_t & rhs)
{
  lhs.Mul (rhs);
  return lhs;
}
/**
 * \ingroup highprec
 * Compound division operator.
 */
inline int64x64_t & operator /= (int64x64_t & lhs, const int64x64_t & rhs)
{
  lhs.Div (rhs);
  return lhs;
}

/**
 * \ingroup highprec
 * Unary plus operator.
 */
inline int64x64_t operator + (const int64x64_t & lhs)
{
  return lhs;
}
/**
 * \ingroup highprec
 * Unary negation operator (change sign operator).
 */
inline int64x64_t operator - (const int64x64_t & lhs)
{
  return int64x64_t (-lhs._v);
}
/**
 * \ingroup highprec
 * Logical not operator.
 */
inline int64x64_t operator ! (const int64x64_t & lhs)
{
  return int64x64_t (!lhs._v);
}


} // namespace ns3

#endif /* INT64X64_128_H */