/usr/include/ns3.26/ns3/half-duplex-ideal-phy.h is in libns3-dev 3.26+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 | /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
* Copyright (c) 2009 CTTC
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Author: Nicola Baldo <nbaldo@cttc.es>
*/
#ifndef HALF_DUPLEX_IDEAL_PHY_H
#define HALF_DUPLEX_IDEAL_PHY_H
#include <ns3/spectrum-value.h>
#include <ns3/mobility-model.h>
#include <ns3/packet.h>
#include <ns3/nstime.h>
#include <ns3/net-device.h>
#include <ns3/spectrum-phy.h>
#include <ns3/spectrum-channel.h>
#include <ns3/spectrum-interference.h>
#include <ns3/data-rate.h>
#include <ns3/generic-phy.h>
#include <ns3/event-id.h>
#include <ns3/spectrum-signal-parameters.h>
namespace ns3 {
/**
* \ingroup spectrum
*
* This PHY layer implementation realizes an ideal OFDM PHY which
* transmits half-duplex (i.e., it can either receive or transmit at a
* given time). The device is ideal in the sense that:
* 1) it uses an error model based on the Shannon capacity, which
* assumes ideal channel coding;
* 2) it uses ideal signal acquisition, i.e., preamble detection and
* synchronization are always successful
* 3) it has no PHY layer overhead
*
* Being half duplex, if a RX is ongoing but a TX is requested, the RX
* is aborted and the TX is started. Of course, no RX can be performed
* while there is an ongoing TX.
*
* The use of OFDM is modeled by means of the Spectrum framework. By
* calling the method SetTxPowerSpectralDensity(), the
* user can specify how much of the spectrum is used, how many
* subcarriers are used, and what power is allocated to each
* subcarrier.
*
* The user can also specify the PHY rate
* at which communications take place by using SetRate(). This is
* equivalent to choosing a particular modulation and coding scheme.
*
* The use of the ShannonSpectrumErrorModel allows us to account for
* the following aspects in determining whether a
* transmission is successful or not:
* - the PHY rate (trades off communication speed with reliability)
* - the power spectral density (trade-off among total power consumed,
* total bandwidth used (i.e., how much of the spectrum is occupied),
* and communication reliability)
* - the signal propagation
*
* This PHY model supports a single antenna model instance which is
* used for both transmission and reception.
*/
class HalfDuplexIdealPhy : public SpectrumPhy
{
public:
HalfDuplexIdealPhy ();
virtual ~HalfDuplexIdealPhy ();
/**
* PHY states
*/
enum State
{
IDLE, //!< Idle state
TX, //!< Transmitting state
RX //!< Receiving state
};
/**
* \brief Get the type ID.
* \return the object TypeId
*/
static TypeId GetTypeId (void);
// inherited from SpectrumPhy
void SetChannel (Ptr<SpectrumChannel> c);
void SetMobility (Ptr<MobilityModel> m);
void SetDevice (Ptr<NetDevice> d);
Ptr<MobilityModel> GetMobility ();
Ptr<NetDevice> GetDevice () const;
Ptr<const SpectrumModel> GetRxSpectrumModel () const;
Ptr<AntennaModel> GetRxAntenna ();
void StartRx (Ptr<SpectrumSignalParameters> params);
/**
* \brief Set the Power Spectral Density of outgoing signals in power units
* (Watt, Pascal...) per Hz.
*
* @param txPsd Tx Power Spectral Density
*/
void SetTxPowerSpectralDensity (Ptr<SpectrumValue> txPsd);
/**
* \brief Set the Noise Power Spectral Density in power units
* (Watt, Pascal...) per Hz.
* @param noisePsd the Noise Power Spectral Density
*/
void SetNoisePowerSpectralDensity (Ptr<const SpectrumValue> noisePsd);
/**
* Start a transmission
*
*
* @param p the packet to be transmitted
*
* @return true if an error occurred and the transmission was not
* started, false otherwise.
*/
bool StartTx (Ptr<Packet> p);
/**
* Set the PHY rate to be used by this PHY.
*
* @param rate DataRate
*/
void SetRate (DataRate rate);
/**
* Get the PHY rate to be used by this PHY.
*
* @return the PHY rate used by this PHY.
*/
DataRate GetRate () const;
/**
* Set the callback for the end of a TX, as part of the
* interconnections between the PHY and the MAC
*
* @param c the callback
*/
void SetGenericPhyTxEndCallback (GenericPhyTxEndCallback c);
/**
* Set the callback for the start of RX, as part of the
* interconnections between the PHY and the MAC
*
* @param c the callback
*/
void SetGenericPhyRxStartCallback (GenericPhyRxStartCallback c);
/**
* set the callback for the end of a RX in error, as part of the
* interconnections between the PHY and the MAC
*
* @param c the callback
*/
void SetGenericPhyRxEndErrorCallback (GenericPhyRxEndErrorCallback c);
/**
* set the callback for the successful end of a RX, as part of the
* interconnections between the PHY and the MAC
*
* @param c the callback
*/
void SetGenericPhyRxEndOkCallback (GenericPhyRxEndOkCallback c);
/**
* set the AntennaModel to be used
*
* \param a the Antenna Model
*/
void SetAntenna (Ptr<AntennaModel> a);
private:
virtual void DoDispose (void);
/**
* Change the PHY state
* \param newState new state
*/
void ChangeState (State newState);
/**
* End the current Tx
*/
void EndTx ();
/**
* About current Rx
*/
void AbortRx ();
/**
* End current Rx
*/
void EndRx ();
EventId m_endRxEventId; //!< End Rx event
Ptr<MobilityModel> m_mobility; //!< Mobility model
Ptr<AntennaModel> m_antenna; //!< Antenna model
Ptr<NetDevice> m_netDevice; //!< NetDevice connected to theis phy
Ptr<SpectrumChannel> m_channel; //!< Channel
Ptr<SpectrumValue> m_txPsd; //!< Tx power spectral density
Ptr<const SpectrumValue> m_rxPsd; //!< Rx power spectral density
Ptr<Packet> m_txPacket; //!< Tx packet
Ptr<Packet> m_rxPacket; //!< Rx packet
DataRate m_rate; //!< Datarate
State m_state; //!< PHY state
TracedCallback<Ptr<const Packet> > m_phyTxStartTrace; //!< Trace - Tx start
TracedCallback<Ptr<const Packet> > m_phyTxEndTrace; //!< Trace - Tx end
TracedCallback<Ptr<const Packet> > m_phyRxStartTrace; //!< Trace - Rx start
TracedCallback<Ptr<const Packet> > m_phyRxAbortTrace; //!< Trace - Rx abort
TracedCallback<Ptr<const Packet> > m_phyRxEndOkTrace; //!< Trace - Tx end (ok)
TracedCallback<Ptr<const Packet> > m_phyRxEndErrorTrace; //!< Trace - Rx end (error)
GenericPhyTxEndCallback m_phyMacTxEndCallback; //!< Callback - Tx end
GenericPhyRxStartCallback m_phyMacRxStartCallback; //!< Callback - Rx start
GenericPhyRxEndErrorCallback m_phyMacRxEndErrorCallback; //!< Callback - Rx error
GenericPhyRxEndOkCallback m_phyMacRxEndOkCallback; //!< Callback - Rx end
SpectrumInterference m_interference; //!< Received interference
};
}
#endif /* HALF_DUPLEX_IDEAL_PHY_H */
|