This file is indexed.

/usr/include/nlopt.hpp is in libnlopt-dev 2.4.2+dfsg-2+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
/* Copyright (c) 2007-2011 Massachusetts Institute of Technology
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 * 
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 * 
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 
 */

// C++ style wrapper around NLopt API
// nlopt.hpp is AUTOMATICALLY GENERATED from nlopt-in.hpp - edit the latter!

#ifndef NLOPT_HPP
#define NLOPT_HPP

#include <nlopt.h>

#include <vector>
#include <stdexcept>
#include <new>
#include <cstdlib>
#include <cstring>
#include <cmath>

// convenience overloading for below (not in nlopt:: since has nlopt_ prefix)
inline nlopt_result nlopt_get_initial_step(const nlopt_opt opt, double *dx) {
      return nlopt_get_initial_step(opt, (const double *) NULL, dx);
}

namespace nlopt {

  //////////////////////////////////////////////////////////////////////
  // nlopt::* namespace versions of the C enumerated types
  //          AUTOMATICALLY GENERATED, DO NOT EDIT
  // GEN_ENUMS_HERE
  enum algorithm {
     GN_DIRECT = 0,
     GN_DIRECT_L,
     GN_DIRECT_L_RAND,
     GN_DIRECT_NOSCAL,
     GN_DIRECT_L_NOSCAL,
     GN_DIRECT_L_RAND_NOSCAL,
     GN_ORIG_DIRECT,
     GN_ORIG_DIRECT_L,
     GD_STOGO,
     GD_STOGO_RAND,
     LD_LBFGS_NOCEDAL,
     LD_LBFGS,
     LN_PRAXIS,
     LD_VAR1,
     LD_VAR2,
     LD_TNEWTON,
     LD_TNEWTON_RESTART,
     LD_TNEWTON_PRECOND,
     LD_TNEWTON_PRECOND_RESTART,
     GN_CRS2_LM,
     GN_MLSL,
     GD_MLSL,
     GN_MLSL_LDS,
     GD_MLSL_LDS,
     LD_MMA,
     LN_COBYLA,
     LN_NEWUOA,
     LN_NEWUOA_BOUND,
     LN_NELDERMEAD,
     LN_SBPLX,
     LN_AUGLAG,
     LD_AUGLAG,
     LN_AUGLAG_EQ,
     LD_AUGLAG_EQ,
     LN_BOBYQA,
     GN_ISRES,
     AUGLAG,
     AUGLAG_EQ,
     G_MLSL,
     G_MLSL_LDS,
     LD_SLSQP,
     LD_CCSAQ,
     GN_ESCH,
     NUM_ALGORITHMS /* not an algorithm, just the number of them */
  };
  enum result {
     FAILURE = -1, /* generic failure code */
     INVALID_ARGS = -2,
     OUT_OF_MEMORY = -3,
     ROUNDOFF_LIMITED = -4,
     FORCED_STOP = -5,
     SUCCESS = 1, /* generic success code */
     STOPVAL_REACHED = 2,
     FTOL_REACHED = 3,
     XTOL_REACHED = 4,
     MAXEVAL_REACHED = 5,
     MAXTIME_REACHED = 6
  };
  // GEN_ENUMS_HERE
  //////////////////////////////////////////////////////////////////////

  typedef nlopt_func func; // nlopt::func synoynm
  typedef nlopt_mfunc mfunc; // nlopt::mfunc synoynm

  // alternative to nlopt_func that takes std::vector<double>
  // ... unfortunately requires a data copy
  typedef double (*vfunc)(const std::vector<double> &x,
			  std::vector<double> &grad, void *data);

  //////////////////////////////////////////////////////////////////////
  
  // NLopt-specific exceptions (corresponding to error codes):
  class roundoff_limited : public std::runtime_error {
  public:
    roundoff_limited() : std::runtime_error("nlopt roundoff-limited") {}
  };

  class forced_stop : public std::runtime_error {
  public:
    forced_stop() : std::runtime_error("nlopt forced stop") {}
  };

  //////////////////////////////////////////////////////////////////////

  class opt {
  private:
    nlopt_opt o;
    
    void mythrow(nlopt_result ret) const {
      switch (ret) {
      case NLOPT_FAILURE: throw std::runtime_error("nlopt failure");
      case NLOPT_OUT_OF_MEMORY: throw std::bad_alloc();
      case NLOPT_INVALID_ARGS: throw std::invalid_argument("nlopt invalid argument");
      case NLOPT_ROUNDOFF_LIMITED: throw roundoff_limited();
      case NLOPT_FORCED_STOP: throw forced_stop();
      default: break;
      }
    }

    typedef struct {
      opt *o;
      mfunc mf; func f; void *f_data;
      vfunc vf;
      nlopt_munge munge_destroy, munge_copy; // non-NULL for SWIG wrappers
    } myfunc_data;

    // free/destroy f_data in nlopt_destroy and nlopt_copy, respectively
    static void *free_myfunc_data(void *p) { 
      myfunc_data *d = (myfunc_data *) p;
      if (d) {
	if (d->f_data && d->munge_destroy) d->munge_destroy(d->f_data);
	delete d;
      }
      return NULL;
    }
    static void *dup_myfunc_data(void *p) {
      myfunc_data *d = (myfunc_data *) p;
      if (d) {
	void *f_data;
	if (d->f_data && d->munge_copy) {
	  f_data = d->munge_copy(d->f_data);
	  if (!f_data) return NULL;
	}
	else
	  f_data = d->f_data;
	myfunc_data *dnew = new myfunc_data;
	if (dnew) {
	  *dnew = *d;
	  dnew->f_data = f_data;
	}
	return (void*) dnew;
      }
      else return NULL;
    }

    // nlopt_func wrapper that catches exceptions
    static double myfunc(unsigned n, const double *x, double *grad, void *d_) {
      myfunc_data *d = reinterpret_cast<myfunc_data*>(d_);
      try {
	return d->f(n, x, grad, d->f_data);
      }
      catch (std::bad_alloc&)
	{ d->o->forced_stop_reason = NLOPT_OUT_OF_MEMORY; }
      catch (std::invalid_argument&)
	{ d->o->forced_stop_reason = NLOPT_INVALID_ARGS; }
      catch (roundoff_limited&)
	{ d->o->forced_stop_reason = NLOPT_ROUNDOFF_LIMITED; }
      catch (forced_stop&)
	{ d->o->forced_stop_reason = NLOPT_FORCED_STOP; }
      catch (...)
	{ d->o->forced_stop_reason = NLOPT_FAILURE; }
      d->o->force_stop(); // stop gracefully, opt::optimize will re-throw
      return HUGE_VAL;
    }

    // nlopt_mfunc wrapper that catches exceptions
    static void mymfunc(unsigned m, double *result,
			unsigned n, const double *x, double *grad, void *d_) {
      myfunc_data *d = reinterpret_cast<myfunc_data*>(d_);
      try {
	d->mf(m, result, n, x, grad, d->f_data);
	return;
      }
      catch (std::bad_alloc&)
	{ d->o->forced_stop_reason = NLOPT_OUT_OF_MEMORY; }
      catch (std::invalid_argument&)
	{ d->o->forced_stop_reason = NLOPT_INVALID_ARGS; }
      catch (roundoff_limited&)
	{ d->o->forced_stop_reason = NLOPT_ROUNDOFF_LIMITED; }
      catch (forced_stop&)
	{ d->o->forced_stop_reason = NLOPT_FORCED_STOP; }
      catch (...)
	{ d->o->forced_stop_reason = NLOPT_FAILURE; }
      d->o->force_stop(); // stop gracefully, opt::optimize will re-throw
      for (unsigned i = 0; i < m; ++i) result[i] = HUGE_VAL;
    }

    std::vector<double> xtmp, gradtmp, gradtmp0; // scratch for myvfunc

    // nlopt_func wrapper, using std::vector<double>
    static double myvfunc(unsigned n, const double *x, double *grad, void *d_){
      myfunc_data *d = reinterpret_cast<myfunc_data*>(d_);
      try {
	std::vector<double> &xv = d->o->xtmp;
	if (n) std::memcpy(&xv[0], x, n * sizeof(double));
	double val=d->vf(xv, grad ? d->o->gradtmp : d->o->gradtmp0, d->f_data);
	if (grad && n) {
	  std::vector<double> &gradv = d->o->gradtmp;
	  std::memcpy(grad, &gradv[0], n * sizeof(double));
	}
	return val;
      }
      catch (std::bad_alloc&)
	{ d->o->forced_stop_reason = NLOPT_OUT_OF_MEMORY; }
      catch (std::invalid_argument&)
	{ d->o->forced_stop_reason = NLOPT_INVALID_ARGS; }
      catch (roundoff_limited&)
	{ d->o->forced_stop_reason = NLOPT_ROUNDOFF_LIMITED; }
      catch (forced_stop&)
	{ d->o->forced_stop_reason = NLOPT_FORCED_STOP; }
      catch (...)
	{ d->o->forced_stop_reason = NLOPT_FAILURE; }
      d->o->force_stop(); // stop gracefully, opt::optimize will re-throw
      return HUGE_VAL;
    }

    void alloc_tmp() {
      if (xtmp.size() != nlopt_get_dimension(o)) {
	xtmp = std::vector<double>(nlopt_get_dimension(o));
	gradtmp = std::vector<double>(nlopt_get_dimension(o));
      }
    }

    result last_result;
    double last_optf;
    nlopt_result forced_stop_reason;

  public:
    // Constructors etc.
    opt() : o(NULL), xtmp(0), gradtmp(0), gradtmp0(0), 
	    last_result(nlopt::FAILURE), last_optf(HUGE_VAL),
	    forced_stop_reason(NLOPT_FORCED_STOP) {}
    ~opt() { nlopt_destroy(o); }
    opt(algorithm a, unsigned n) : 
      o(nlopt_create(nlopt_algorithm(a), n)), 
      xtmp(0), gradtmp(0), gradtmp0(0),
      last_result(nlopt::FAILURE), last_optf(HUGE_VAL),
      forced_stop_reason(NLOPT_FORCED_STOP) {
      if (!o) throw std::bad_alloc();
      nlopt_set_munge(o, free_myfunc_data, dup_myfunc_data);
    }
    opt(const opt& f) : o(nlopt_copy(f.o)), 
			xtmp(f.xtmp), gradtmp(f.gradtmp), gradtmp0(0),
			last_result(f.last_result), last_optf(f.last_optf),
			forced_stop_reason(f.forced_stop_reason) {
      if (f.o && !o) throw std::bad_alloc();
    }
    opt& operator=(opt const& f) {
      if (this == &f) return *this; // self-assignment
      nlopt_destroy(o);
      o = nlopt_copy(f.o);
      if (f.o && !o) throw std::bad_alloc();
      xtmp = f.xtmp; gradtmp = f.gradtmp;
      last_result = f.last_result; last_optf = f.last_optf;
      forced_stop_reason = f.forced_stop_reason;
      return *this;
    }

    // Do the optimization:
    result optimize(std::vector<double> &x, double &opt_f) {
      if (o && nlopt_get_dimension(o) != x.size())
        throw std::invalid_argument("dimension mismatch");
      forced_stop_reason = NLOPT_FORCED_STOP;
      nlopt_result ret = nlopt_optimize(o, x.empty() ? NULL : &x[0], &opt_f);
      last_result = result(ret);
      last_optf = opt_f;
      if (ret == NLOPT_FORCED_STOP)
	mythrow(forced_stop_reason);
      mythrow(ret);
      return last_result;
    }

    // variant mainly useful for SWIG wrappers:
    std::vector<double> optimize(const std::vector<double> &x0) {
      std::vector<double> x(x0);
      last_result = optimize(x, last_optf);
      return x;
    }
    result last_optimize_result() const { return last_result; }
    double last_optimum_value() const { return last_optf; }

    // accessors:
    algorithm get_algorithm() const {
      if (!o) throw std::runtime_error("uninitialized nlopt::opt");
      return algorithm(nlopt_get_algorithm(o));
    }
    const char *get_algorithm_name() const {
      if (!o) throw std::runtime_error("uninitialized nlopt::opt");
      return nlopt_algorithm_name(nlopt_get_algorithm(o));
    }
    unsigned get_dimension() const {
      if (!o) throw std::runtime_error("uninitialized nlopt::opt");
      return nlopt_get_dimension(o);
    }

    // Set the objective function
    void set_min_objective(func f, void *f_data) {
      myfunc_data *d = new myfunc_data;
      if (!d) throw std::bad_alloc();
      d->o = this; d->f = f; d->f_data = f_data; d->mf = NULL; d->vf = NULL;
      d->munge_destroy = d->munge_copy = NULL;
      mythrow(nlopt_set_min_objective(o, myfunc, d)); // d freed via o
    }
    void set_min_objective(vfunc vf, void *f_data) {
      myfunc_data *d = new myfunc_data;
      if (!d) throw std::bad_alloc();
      d->o = this; d->f = NULL; d->f_data = f_data; d->mf = NULL; d->vf = vf;
      d->munge_destroy = d->munge_copy = NULL;
      mythrow(nlopt_set_min_objective(o, myvfunc, d)); // d freed via o
      alloc_tmp();
    }
    void set_max_objective(func f, void *f_data) {
      myfunc_data *d = new myfunc_data;
      if (!d) throw std::bad_alloc();
      d->o = this; d->f = f; d->f_data = f_data; d->mf = NULL; d->vf = NULL;
      d->munge_destroy = d->munge_copy = NULL;
      mythrow(nlopt_set_max_objective(o, myfunc, d)); // d freed via o
    }
    void set_max_objective(vfunc vf, void *f_data) {
      myfunc_data *d = new myfunc_data;
      if (!d) throw std::bad_alloc();
      d->o = this; d->f = NULL; d->f_data = f_data; d->mf = NULL; d->vf = vf;
      d->munge_destroy = d->munge_copy = NULL;
      mythrow(nlopt_set_max_objective(o, myvfunc, d)); // d freed via o
      alloc_tmp();
    }

    // for internal use in SWIG wrappers -- variant that
    // takes ownership of f_data, with munging for destroy/copy
    void set_min_objective(func f, void *f_data,
			   nlopt_munge md, nlopt_munge mc) {
      myfunc_data *d = new myfunc_data;
      if (!d) throw std::bad_alloc();
      d->o = this; d->f = f; d->f_data = f_data; d->mf = NULL; d->vf = NULL;
      d->munge_destroy = md; d->munge_copy = mc;
      mythrow(nlopt_set_min_objective(o, myfunc, d)); // d freed via o
    }
    void set_max_objective(func f, void *f_data,
			   nlopt_munge md, nlopt_munge mc) {
      myfunc_data *d = new myfunc_data;
      if (!d) throw std::bad_alloc();
      d->o = this; d->f = f; d->f_data = f_data; d->mf = NULL; d->vf = NULL;
      d->munge_destroy = md; d->munge_copy = mc;
      mythrow(nlopt_set_max_objective(o, myfunc, d)); // d freed via o
    }

    // Nonlinear constraints:

    void remove_inequality_constraints() {
      nlopt_result ret = nlopt_remove_inequality_constraints(o);
      mythrow(ret);
    }
    void add_inequality_constraint(func f, void *f_data, double tol=0) {
      myfunc_data *d = new myfunc_data;
      if (!d) throw std::bad_alloc();
      d->o = this; d->f = f; d->f_data = f_data; d->mf = NULL; d->vf = NULL;
      d->munge_destroy = d->munge_copy = NULL;
      mythrow(nlopt_add_inequality_constraint(o, myfunc, d, tol));
    }
    void add_inequality_constraint(vfunc vf, void *f_data, double tol=0) {
      myfunc_data *d = new myfunc_data;
      if (!d) throw std::bad_alloc();
      d->o = this; d->f = NULL; d->f_data = f_data; d->mf = NULL; d->vf = vf;
      d->munge_destroy = d->munge_copy = NULL;
      mythrow(nlopt_add_inequality_constraint(o, myvfunc, d, tol));
      alloc_tmp();
    }
    void add_inequality_mconstraint(mfunc mf, void *f_data, 
				    const std::vector<double> &tol) {
      myfunc_data *d = new myfunc_data;
      if (!d) throw std::bad_alloc();
      d->o = this; d->mf = mf; d->f_data = f_data; d->f = NULL; d->vf = NULL;
      d->munge_destroy = d->munge_copy = NULL;
      mythrow(nlopt_add_inequality_mconstraint(o, tol.size(), mymfunc, d, 
					       tol.empty() ? NULL : &tol[0]));
    }

    void remove_equality_constraints() {
      nlopt_result ret = nlopt_remove_equality_constraints(o);
      mythrow(ret);
    }
    void add_equality_constraint(func f, void *f_data, double tol=0) {
      myfunc_data *d = new myfunc_data;
      if (!d) throw std::bad_alloc();
      d->o = this; d->f = f; d->f_data = f_data; d->mf = NULL; d->vf = NULL;
      d->munge_destroy = d->munge_copy = NULL;
      mythrow(nlopt_add_equality_constraint(o, myfunc, d, tol));
    }
    void add_equality_constraint(vfunc vf, void *f_data, double tol=0) {
      myfunc_data *d = new myfunc_data;
      if (!d) throw std::bad_alloc();
      d->o = this; d->f = NULL; d->f_data = f_data; d->mf = NULL; d->vf = vf;
      d->munge_destroy = d->munge_copy = NULL;
      mythrow(nlopt_add_equality_constraint(o, myvfunc, d, tol));
      alloc_tmp();
    }
    void add_equality_mconstraint(mfunc mf, void *f_data, 
				  const std::vector<double> &tol) {
      myfunc_data *d = new myfunc_data;
      if (!d) throw std::bad_alloc();
      d->o = this; d->mf = mf; d->f_data = f_data; d->f = NULL; d->vf = NULL;
      d->munge_destroy = d->munge_copy = NULL;
      mythrow(nlopt_add_equality_mconstraint(o, tol.size(), mymfunc, d, 
					     tol.empty() ? NULL : &tol[0]));
    }

    // For internal use in SWIG wrappers (see also above)
    void add_inequality_constraint(func f, void *f_data, 
				   nlopt_munge md, nlopt_munge mc,
				   double tol=0) {
      myfunc_data *d = new myfunc_data;
      if (!d) throw std::bad_alloc();
      d->o = this; d->f = f; d->f_data = f_data; d->mf = NULL; d->vf = NULL;
      d->munge_destroy = md; d->munge_copy = mc;
      mythrow(nlopt_add_inequality_constraint(o, myfunc, d, tol));
    }
    void add_equality_constraint(func f, void *f_data, 
				 nlopt_munge md, nlopt_munge mc,
				 double tol=0) {
      myfunc_data *d = new myfunc_data;
      if (!d) throw std::bad_alloc();
      d->o = this; d->f = f; d->f_data = f_data; d->mf = NULL; d->vf = NULL;
      d->munge_destroy = md; d->munge_copy = mc;
      mythrow(nlopt_add_equality_constraint(o, myfunc, d, tol));
    }
    void add_inequality_mconstraint(mfunc mf, void *f_data, 
				    nlopt_munge md, nlopt_munge mc,
				    const std::vector<double> &tol) {
      myfunc_data *d = new myfunc_data;
      if (!d) throw std::bad_alloc();
      d->o = this; d->mf = mf; d->f_data = f_data; d->f = NULL; d->vf = NULL;
      d->munge_destroy = md; d->munge_copy = mc;
      mythrow(nlopt_add_inequality_mconstraint(o, tol.size(), mymfunc, d, 
					       tol.empty() ? NULL : &tol[0]));
    }
    void add_equality_mconstraint(mfunc mf, void *f_data, 
				  nlopt_munge md, nlopt_munge mc,
				  const std::vector<double> &tol) {
      myfunc_data *d = new myfunc_data;
      if (!d) throw std::bad_alloc();
      d->o = this; d->mf = mf; d->f_data = f_data; d->f = NULL; d->vf = NULL;
      d->munge_destroy = md; d->munge_copy = mc;
      mythrow(nlopt_add_equality_mconstraint(o, tol.size(), mymfunc, d, 
					     tol.empty() ? NULL : &tol[0]));
    }

#define NLOPT_GETSET_VEC(name)						\
    void set_##name(double val) {					\
      mythrow(nlopt_set_##name##1(o, val));				\
    }									\
    void get_##name(std::vector<double> &v) const {			\
      if (o && nlopt_get_dimension(o) != v.size())			\
        throw std::invalid_argument("dimension mismatch");		\
      mythrow(nlopt_get_##name(o, v.empty() ? NULL : &v[0]));		\
    }									\
    std::vector<double> get_##name() const {			\
      if (!o) throw std::runtime_error("uninitialized nlopt::opt");	\
      std::vector<double> v(nlopt_get_dimension(o));			\
      get_##name(v);							\
      return v;								\
    }			 						\
    void set_##name(const std::vector<double> &v) {			\
      if (o && nlopt_get_dimension(o) != v.size())			\
        throw std::invalid_argument("dimension mismatch");		\
      mythrow(nlopt_set_##name(o, v.empty() ? NULL : &v[0]));		\
    }

    NLOPT_GETSET_VEC(lower_bounds)
    NLOPT_GETSET_VEC(upper_bounds)

    // stopping criteria:

#define NLOPT_GETSET(T, name)						\
    T get_##name() const {						\
      if (!o) throw std::runtime_error("uninitialized nlopt::opt");	\
      return nlopt_get_##name(o);					\
    }									\
    void set_##name(T name) {						\
      mythrow(nlopt_set_##name(o, name));				\
    }
    NLOPT_GETSET(double, stopval)
    NLOPT_GETSET(double, ftol_rel)
    NLOPT_GETSET(double, ftol_abs)
    NLOPT_GETSET(double, xtol_rel)
    NLOPT_GETSET_VEC(xtol_abs)
    NLOPT_GETSET(int, maxeval)
    NLOPT_GETSET(double, maxtime)

    NLOPT_GETSET(int, force_stop)
    void force_stop() { set_force_stop(1); }

    // algorithm-specific parameters:

    void set_local_optimizer(const opt &lo) {
      nlopt_result ret = nlopt_set_local_optimizer(o, lo.o);
      mythrow(ret);
    }

    NLOPT_GETSET(unsigned, population)
    NLOPT_GETSET(unsigned, vector_storage)
    NLOPT_GETSET_VEC(initial_step)

    void set_default_initial_step(const std::vector<double> &x) {
      nlopt_result ret 
	= nlopt_set_default_initial_step(o, x.empty() ? NULL : &x[0]);
      mythrow(ret);
    }
    void get_initial_step(const std::vector<double> &x, std::vector<double> &dx) const {
      if (o && (nlopt_get_dimension(o) != x.size()
		|| nlopt_get_dimension(o) != dx.size()))
        throw std::invalid_argument("dimension mismatch");
      nlopt_result ret = nlopt_get_initial_step(o, x.empty() ? NULL : &x[0],
						dx.empty() ? NULL : &dx[0]);
      mythrow(ret);
    }
    std::vector<double> get_initial_step_(const std::vector<double> &x) const {
      if (!o) throw std::runtime_error("uninitialized nlopt::opt");
      std::vector<double> v(nlopt_get_dimension(o));
      get_initial_step(x, v);
      return v;
    }
  };

#undef NLOPT_GETSET
#undef NLOPT_GETSET_VEC

  //////////////////////////////////////////////////////////////////////

  inline void srand(unsigned long seed) { nlopt_srand(seed); }
  inline void srand_time() { nlopt_srand_time(); }
  inline void version(int &major, int &minor, int &bugfix) {
    nlopt_version(&major, &minor, &bugfix);
  }
  inline int version_major() {
    int major, minor, bugfix;
    nlopt_version(&major, &minor, &bugfix);
    return major;
  }
  inline int version_minor() {
    int major, minor, bugfix;
    nlopt_version(&major, &minor, &bugfix);
    return minor;
  }
  inline int version_bugfix() {
    int major, minor, bugfix;
    nlopt_version(&major, &minor, &bugfix);
    return bugfix;
  }
  inline const char *algorithm_name(algorithm a) {
    return nlopt_algorithm_name(nlopt_algorithm(a));
  }

  //////////////////////////////////////////////////////////////////////

} // namespace nlopt

#endif /* NLOPT_HPP */