/usr/include/newmat/precisio.h is in libnewmat10-dev 1.10.4-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 | /// \ingroup newmat
///@{
/// \file precisio.h
/// Floating point precision constants.
#ifndef PRECISION_LIB
#define PRECISION_LIB 0
#define WANT_MATH
#include "include.h" // in case being used as stand alone
#ifdef _STANDARD_ // standard library available
#include <limits>
#endif
#ifdef use_namespace
namespace NEWMAT {
#endif
#ifdef _STANDARD_ // standard library available
#ifdef OPT_COMPATIBLE
#include <cfloat> // for FLT_MAX
#endif
using namespace std;
/// Floating point precision.
class FloatingPointPrecision
{
public:
static int Dig() // number of decimal digits or precision
{ return numeric_limits<Real>::digits10 ; }
static Real Epsilon() // smallest number such that 1+Eps!=Eps
{ return numeric_limits<Real>::epsilon(); }
static int Mantissa() // bits in mantisa
{ return numeric_limits<Real>::digits; }
static Real Maximum() // maximum value
{ return numeric_limits<Real>::max(); }
static int MaximumDecimalExponent() // maximum decimal exponent
{ return numeric_limits<Real>::max_exponent10; }
static int MaximumExponent() // maximum binary exponent
{ return numeric_limits<Real>::max_exponent; }
static Real LnMaximum() // natural log of maximum
{ return (Real)log(Maximum()); }
static Real Minimum() // minimum positive value
{ return numeric_limits<Real>::min(); }
static int MinimumDecimalExponent() // minimum decimal exponent
{ return numeric_limits<Real>::min_exponent10; }
static int MinimumExponent() // minimum binary exponent
{ return numeric_limits<Real>::min_exponent; }
static Real LnMinimum() // natural log of minimum
{ return (Real)log(Minimum()); }
static int Radix() // exponent radix
{ return numeric_limits<Real>::radix; }
static int Rounds() // addition rounding (1 = does round)
{
return numeric_limits<Real>::round_style ==
round_to_nearest ? 1 : 0;
}
};
#else // _STANDARD_ not defined
#ifndef SystemV // if there is float.h
#ifdef USING_FLOAT
/// Floating point precision (type float).
class FloatingPointPrecision
{
public:
static int Dig()
{ return FLT_DIG; } // number of decimal digits or precision
static Real Epsilon()
{ return FLT_EPSILON; } // smallest number such that 1+Eps!=Eps
static int Mantissa()
{ return FLT_MANT_DIG; } // bits in mantisa
static Real Maximum()
{ return FLT_MAX; } // maximum value
static int MaximumDecimalExponent()
{ return FLT_MAX_10_EXP; } // maximum decimal exponent
static int MaximumExponent()
{ return FLT_MAX_EXP; } // maximum binary exponent
static Real LnMaximum()
{ return (Real)log(Maximum()); } // natural log of maximum
static Real Minimum()
{ return FLT_MIN; } // minimum positive value
static int MinimumDecimalExponent()
{ return FLT_MIN_10_EXP; } // minimum decimal exponent
static int MinimumExponent()
{ return FLT_MIN_EXP; } // minimum binary exponent
static Real LnMinimum()
{ return (Real)log(Minimum()); } // natural log of minimum
static int Radix()
{ return FLT_RADIX; } // exponent radix
static int Rounds()
{ return FLT_ROUNDS; } // addition rounding (1 = does round)
};
#endif // USING_FLOAT
#ifdef USING_DOUBLE
/// Floating point precision (type double).
class FloatingPointPrecision
{
public:
static int Dig()
{ return DBL_DIG; } // number of decimal digits or precision
static Real Epsilon()
{ return DBL_EPSILON; } // smallest number such that 1+Eps!=Eps
static int Mantissa()
{ return DBL_MANT_DIG; } // bits in mantisa
static Real Maximum()
{ return DBL_MAX; } // maximum value
static int MaximumDecimalExponent()
{ return DBL_MAX_10_EXP; } // maximum decimal exponent
static int MaximumExponent()
{ return DBL_MAX_EXP; } // maximum binary exponent
static Real LnMaximum()
{ return (Real)log(Maximum()); } // natural log of maximum
static Real Minimum()
{
//#ifdef __BCPLUSPLUS__
// return 2.225074e-308; // minimum positive value
//#else
return DBL_MIN;
//#endif
}
static int MinimumDecimalExponent()
{ return DBL_MIN_10_EXP; } // minimum decimal exponent
static int MinimumExponent()
{ return DBL_MIN_EXP; } // minimum binary exponent
static Real LnMinimum()
{ return (Real)log(Minimum()); } // natural log of minimum
static int Radix()
{ return FLT_RADIX; } // exponent radix
static int Rounds()
{ return FLT_ROUNDS; } // addition rounding (1 = does round)
};
#endif // USING_DOUBLE
#else // if there is no float.h
#ifdef OPT_COMPATIBLE
#define FLT_MAX MAXFLOAT
#endif
#ifdef USING_FLOAT
/// Floating point precision (type float).
class FloatingPointPrecision
{
public:
static Real Epsilon()
{ return pow(2.0,(int)(1-FSIGNIF)); }
// smallest number such that 1+Eps!=Eps
static Real Maximum()
{ return MAXFLOAT; } // maximum value
static Real LnMaximum()
{ return (Real)log(Maximum()); } // natural log of maximum
static Real Minimum()
{ return MINFLOAT; } // minimum positive value
static Real LnMinimum()
{ return (Real)log(Minimum()); } // natural log of minimum
};
#endif // USING_FLOAT
#ifdef USING_DOUBLE
/// Floating point precision (type double).
class FloatingPointPrecision
{
public:
static Real Epsilon()
{ return pow(2.0,(int)(1-DSIGNIF)); }
// smallest number such that 1+Eps!=Eps
static Real Maximum()
{ return MAXDOUBLE; } // maximum value
static Real LnMaximum()
{ return LN_MAXDOUBLE; } // natural log of maximum
static Real Minimum()
{ return MINDOUBLE; }
static Real LnMinimum()
{ return LN_MINDOUBLE; } // natural log of minimum
};
#endif // USING_DOUBLE
#endif // SystemV
#endif // _STANDARD_
#ifdef use_namespace
}
#endif // use_namespace
#endif // PRECISION_LIB
///@}
|