This file is indexed.

/usr/include/newmat/precisio.h is in libnewmat10-dev 1.10.4-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
/// \ingroup newmat
///@{

/// \file precisio.h
/// Floating point precision constants.

#ifndef PRECISION_LIB
#define PRECISION_LIB 0

#define WANT_MATH
#include "include.h"              // in case being used as stand alone

#ifdef _STANDARD_                 // standard library available
#include <limits>
#endif

#ifdef use_namespace
namespace NEWMAT {
#endif

#ifdef _STANDARD_                 // standard library available

#ifdef OPT_COMPATIBLE
#include <cfloat>                 // for FLT_MAX
#endif

using namespace std;
	
/// Floating point precision.
class FloatingPointPrecision
{
public:
   static int Dig()              // number of decimal digits or precision
      { return numeric_limits<Real>::digits10 ; }

   static Real Epsilon()         // smallest number such that 1+Eps!=Eps
      { return numeric_limits<Real>::epsilon(); }

   static int Mantissa()         // bits in mantisa
      { return numeric_limits<Real>::digits; }

   static Real Maximum()         // maximum value
      { return numeric_limits<Real>::max(); }

   static int MaximumDecimalExponent()  // maximum decimal exponent
      { return numeric_limits<Real>::max_exponent10; }

   static int MaximumExponent()  // maximum binary exponent
      { return numeric_limits<Real>::max_exponent; }

   static Real LnMaximum()       // natural log of maximum
      { return (Real)log(Maximum()); }

   static Real Minimum()         // minimum positive value
      { return numeric_limits<Real>::min(); } 

   static int MinimumDecimalExponent() // minimum decimal exponent
      { return numeric_limits<Real>::min_exponent10; }

   static int MinimumExponent()  // minimum binary exponent
      { return numeric_limits<Real>::min_exponent; }

   static Real LnMinimum()       // natural log of minimum
      { return (Real)log(Minimum()); }

   static int Radix()            // exponent radix
      { return numeric_limits<Real>::radix; }

   static int Rounds()           // addition rounding (1 = does round)
   {
	  return numeric_limits<Real>::round_style ==
		 round_to_nearest ? 1 : 0;
   }

};


#else                              // _STANDARD_ not defined

#ifndef SystemV                    // if there is float.h

#ifdef USING_FLOAT

/// Floating point precision (type float).
class FloatingPointPrecision
{
public:
   static int Dig()
      { return FLT_DIG; }        // number of decimal digits or precision

   static Real Epsilon()
      { return FLT_EPSILON; }    // smallest number such that 1+Eps!=Eps

   static int Mantissa()
      { return FLT_MANT_DIG; }   // bits in mantisa

   static Real Maximum()
      { return FLT_MAX; }        // maximum value

   static int MaximumDecimalExponent()
      { return FLT_MAX_10_EXP; } // maximum decimal exponent

   static int MaximumExponent()
      { return FLT_MAX_EXP; }    // maximum binary exponent

   static Real LnMaximum()
      { return (Real)log(Maximum()); } // natural log of maximum

   static Real Minimum()
      { return FLT_MIN; }        // minimum positive value

   static int MinimumDecimalExponent()
      { return FLT_MIN_10_EXP; } // minimum decimal exponent

   static int MinimumExponent()
      { return FLT_MIN_EXP; }    // minimum binary exponent

   static Real LnMinimum()
      { return (Real)log(Minimum()); } // natural log of minimum

   static int Radix()
      { return FLT_RADIX; }      // exponent radix

   static int Rounds()
      { return FLT_ROUNDS; }     // addition rounding (1 = does round)

};

#endif                           // USING_FLOAT


#ifdef USING_DOUBLE

/// Floating point precision (type double).
class FloatingPointPrecision
{
public:

   static int Dig()
      { return DBL_DIG; }        // number of decimal digits or precision

   static Real Epsilon()
      { return DBL_EPSILON; }    // smallest number such that 1+Eps!=Eps

   static int Mantissa()
      { return DBL_MANT_DIG; }   // bits in mantisa

   static Real Maximum()
      { return DBL_MAX; }        // maximum value

   static int MaximumDecimalExponent()
      { return DBL_MAX_10_EXP; } // maximum decimal exponent

   static int MaximumExponent()
      { return DBL_MAX_EXP; }    // maximum binary exponent

   static Real LnMaximum()
      { return (Real)log(Maximum()); } // natural log of maximum

   static Real Minimum()
   {
//#ifdef __BCPLUSPLUS__
//       return 2.225074e-308;     // minimum positive value
//#else
       return DBL_MIN;
//#endif
   }

   static int MinimumDecimalExponent()
      { return DBL_MIN_10_EXP; } // minimum decimal exponent

   static int MinimumExponent()
      { return DBL_MIN_EXP; }    // minimum binary exponent

   static Real LnMinimum()
      { return (Real)log(Minimum()); } // natural log of minimum


   static int Radix()
      { return FLT_RADIX; }      // exponent radix

   static int Rounds()
      { return FLT_ROUNDS; }     // addition rounding (1 = does round)

};

#endif                             // USING_DOUBLE

#else                              // if there is no float.h

#ifdef OPT_COMPATIBLE
#define FLT_MAX MAXFLOAT
#endif


#ifdef USING_FLOAT

/// Floating point precision (type float).
class FloatingPointPrecision
{
public:

   static Real Epsilon()
      { return pow(2.0,(int)(1-FSIGNIF)); }
                                   // smallest number such that 1+Eps!=Eps

   static Real Maximum()
      { return MAXFLOAT; }            // maximum value

   static Real LnMaximum()
      { return (Real)log(Maximum()); }  // natural log of maximum

   static Real Minimum()
      { return MINFLOAT; }             // minimum positive value

   static Real LnMinimum()
      { return (Real)log(Minimum()); }  // natural log of minimum

};

#endif                                  // USING_FLOAT


#ifdef USING_DOUBLE

/// Floating point precision (type double).
class FloatingPointPrecision
{
public:

   static Real Epsilon()
      { return pow(2.0,(int)(1-DSIGNIF)); }
                                      // smallest number such that 1+Eps!=Eps

   static Real Maximum()
      { return MAXDOUBLE; }           // maximum value

   static Real LnMaximum()
      { return LN_MAXDOUBLE; }        // natural log of maximum

   static Real Minimum()
      { return MINDOUBLE; }

   static Real LnMinimum()
      { return LN_MINDOUBLE; }        // natural log of minimum
};

#endif                                // USING_DOUBLE

#endif                                // SystemV

#endif                                // _STANDARD_




#ifdef use_namespace
}
#endif                                // use_namespace



#endif                                // PRECISION_LIB


///@}