/usr/include/mlpack/methods/perceptron/perceptron.hpp is in libmlpack-dev 2.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 | /**
* @file perceptron.hpp
* @author Udit Saxena
*
* Definition of Perceptron class.
*
* mlpack is free software; you may redistribute it and/or modify it under the
* terms of the 3-clause BSD license. You should have received a copy of the
* 3-clause BSD license along with mlpack. If not, see
* http://www.opensource.org/licenses/BSD-3-Clause for more information.
*/
#ifndef MLPACK_METHODS_PERCEPTRON_PERCEPTRON_HPP
#define MLPACK_METHODS_PERCEPTRON_PERCEPTRON_HPP
#include <mlpack/core.hpp>
#include "initialization_methods/zero_init.hpp"
#include "initialization_methods/random_init.hpp"
#include "learning_policies/simple_weight_update.hpp"
namespace mlpack {
namespace perceptron {
/**
* This class implements a simple perceptron (i.e., a single layer neural
* network). It converges if the supplied training dataset is linearly
* separable.
*
* @tparam LearnPolicy Options of SimpleWeightUpdate and GradientDescent.
* @tparam WeightInitializationPolicy Option of ZeroInitialization and
* RandomInitialization.
*/
template<typename LearnPolicy = SimpleWeightUpdate,
typename WeightInitializationPolicy = ZeroInitialization,
typename MatType = arma::mat>
class Perceptron
{
public:
/**
* Constructor: create the perceptron with the given number of classes and
* initialize the weight matrix, but do not perform any training. (Call the
* Train() function to perform training.)
*
* @param numClasses Number of classes in the dataset.
* @param dimensionality Dimensionality of the dataset.
* @param maxIterations Maximum number of iterations for the perceptron
* learning algorithm.
*/
Perceptron(const size_t numClasses = 0,
const size_t dimensionality = 0,
const size_t maxIterations = 1000);
/**
* Constructor: constructs the perceptron by building the weights matrix,
* which is later used in classification. The number of classes should be
* specified separately, and the labels vector should contain values in the
* range [0, numClasses - 1]. The data::NormalizeLabels() function can be
* used if the labels vector does not contain values in the required range.
*
* @param data Input, training data.
* @param labels Labels of dataset.
* @param numClasses Number of classes in the dataset.
* @param maxIterations Maximum number of iterations for the perceptron
* learning algorithm.
*/
Perceptron(const MatType& data,
const arma::Row<size_t>& labels,
const size_t numClasses,
const size_t maxIterations = 1000);
/**
* Alternate constructor which copies parameters from an already initiated
* perceptron.
*
* @param other The other initiated Perceptron object from which we copy the
* values from.
* @param data The data on which to train this Perceptron object on.
* @param D Weight vector to use while training. For boosting purposes.
* @param labels The labels of data.
*/
Perceptron(const Perceptron<>& other,
const MatType& data,
const arma::Row<size_t>& labels,
const arma::rowvec& instanceWeights);
/**
* Train the perceptron on the given data for up to the maximum number of
* iterations (specified in the constructor or through MaxIterations()). A
* single iteration corresponds to a single pass through the data, so if you
* want to pass through the dataset only once, set MaxIterations() to 1.
*
* This training does not reset the model weights, so you can call Train() on
* multiple datasets sequentially.
*
* @param data Dataset on which training should be performed.
* @param labels Labels of the dataset. Make sure that these labels don't
* contain any values greater than NumClasses()!
* @param instanceWeights Cost matrix. Stores the cost of mispredicting
* instances. This is useful for boosting.
*/
void Train(const MatType& data,
const arma::Row<size_t>& labels,
const arma::rowvec& instanceWeights = arma::rowvec());
/**
* Classification function. After training, use the weights matrix to
* classify test, and put the predicted classes in predictedLabels.
*
* @param test Testing data or data to classify.
* @param predictedLabels Vector to store the predicted classes after
* classifying test.
*/
void Classify(const MatType& test, arma::Row<size_t>& predictedLabels);
/**
* Serialize the perceptron.
*/
template<typename Archive>
void Serialize(Archive& ar, const unsigned int /* version */);
//! Get the maximum number of iterations.
size_t MaxIterations() const { return maxIterations; }
//! Modify the maximum number of iterations.
size_t& MaxIterations() { return maxIterations; }
//! Get the number of classes this perceptron has been trained for.
size_t NumClasses() const { return weights.n_cols; }
//! Get the weight matrix.
const arma::mat& Weights() const { return weights; }
//! Modify the weight matrix. You had better know what you are doing!
arma::mat& Weights() { return weights; }
//! Get the biases.
const arma::vec& Biases() const { return biases; }
//! Modify the biases. You had better know what you are doing!
arma::vec& Biases() { return biases; }
private:
//! The maximum number of iterations during training.
size_t maxIterations;
/**
* Stores the weights for each of the input class labels. Each column
* corresponds to the weights for one class label, and each row corresponds to
* the weights for one dimension of the input data. The biases are held in a
* separate vector.
*/
arma::mat weights;
//! The biases for each class.
arma::vec biases;
};
} // namespace perceptron
} // namespace mlpack
#include "perceptron_impl.hpp"
#endif
|