/usr/include/mlpack/methods/cf/cf.hpp is in libmlpack-dev 2.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 | /**
* @file cf.hpp
* @author Mudit Raj Gupta
* @author Sumedh Ghaisas
*
* Collaborative filtering.
*
* Defines the CF class to perform collaborative filtering on the specified data
* set using alternating least squares (ALS).
*
* mlpack is free software; you may redistribute it and/or modify it under the
* terms of the 3-clause BSD license. You should have received a copy of the
* 3-clause BSD license along with mlpack. If not, see
* http://www.opensource.org/licenses/BSD-3-Clause for more information.
*/
#ifndef MLPACK_METHODS_CF_CF_HPP
#define MLPACK_METHODS_CF_CF_HPP
#include <mlpack/core.hpp>
#include <mlpack/methods/neighbor_search/neighbor_search.hpp>
#include <mlpack/methods/amf/amf.hpp>
#include <mlpack/methods/amf/update_rules/nmf_als.hpp>
#include <mlpack/methods/amf/termination_policies/simple_residue_termination.hpp>
#include <set>
#include <map>
#include <iostream>
namespace mlpack {
namespace cf /** Collaborative filtering. */ {
/**
* Template class for factorizer traits. This stores the default values for the
* variables to be assumed for a given factorizer. If any of the factorizers
* needs to have a different value for the traits, a template specialization has
* be wriiten for that factorizer. An example can be found in the module for
* Regularized SVD.
*/
template<typename FactorizerType>
struct FactorizerTraits
{
/**
* If true, then the passed data matrix is used for factorizer.Apply().
* Otherwise, it is modified into a form suitable for factorization.
*/
static const bool UsesCoordinateList = false;
};
/**
* This class implements Collaborative Filtering (CF). This implementation
* presently supports Alternating Least Squares (ALS) for collaborative
* filtering.
*
* A simple example of how to run Collaborative Filtering is shown below.
*
* @code
* extern arma::mat data; // (user, item, rating) table
* extern arma::Col<size_t> users; // users seeking recommendations
* arma::Mat<size_t> recommendations; // Recommendations
*
* CF cf(data); // Default options.
*
* // Generate 10 recommendations for all users.
* cf.GetRecommendations(10, recommendations);
*
* // Generate 10 recommendations for specified users.
* cf.GetRecommendations(10, recommendations, users);
*
* @endcode
*
* The data matrix is a (user, item, rating) table. Each column in the matrix
* should have three rows. The first represents the user; the second represents
* the item; and the third represents the rating. The user and item, while they
* are in a matrix that holds doubles, should hold integer (or size_t) values.
* The user and item indices are assumed to start at 0.
*
* @tparam FactorizerType The type of matrix factorization to use to decompose
* the rating matrix (a W and H matrix). This must implement the method
* Apply(arma::sp_mat& data, size_t rank, arma::mat& W, arma::mat& H).
*/
class CF
{
public:
/**
* Initialize the CF object without performing any factorization. Be sure to
* call Train() before calling GetRecommendations() or any other functions!
*/
CF(const size_t numUsersForSimilarity = 5,
const size_t rank = 0);
/**
* Initialize the CF object using an instantiated factorizer, immediately
* factorizing the given data to create a model. There are parameters that can
* be set; default values are provided for each of them. If the rank is left
* unset (or is set to 0), a simple density-based heuristic will be used to
* choose a rank.
*
* The provided dataset should be a coordinate list; that is, a 3-row matrix
* where each column corresponds to a (user, item, rating) entry in the
* matrix.
*
* @param data Data matrix: coordinate list or dense matrix.
* @param factorizer Instantiated factorizer object.
* @param numUsersForSimilarity Size of the neighborhood.
* @param rank Rank parameter for matrix factorization.
*/
template<typename FactorizerType = amf::NMFALSFactorizer>
CF(const arma::mat& data,
FactorizerType factorizer = FactorizerType(),
const size_t numUsersForSimilarity = 5,
const size_t rank = 0);
/**
* Initialize the CF object using an instantiated factorizer, immediately
* factorizing the given data to create a model. There are parameters that can
* be set; default values are provided for each of them. If the rank is left
* unset (or is set to 0), a simple density-based heuristic will be used to
* choose a rank. Data will be considered in the format of items vs. users and
* will be passed directly to the factorizer without cleaning. This overload
* of the constructor will only be available if the factorizer does not use a
* coordinate list (i.e. if UsesCoordinateList is false).
*
* The U and T template parameters are for SFINAE, so that this overload is
* only available when the FactorizerType uses a coordinate list.
*
* @param data Sparse matrix data.
* @param factorizer Instantiated factorizer object.
* @param numUsersForSimilarity Size of the neighborhood.
* @param rank Rank parameter for matrix factorization.
*/
template<typename FactorizerType = amf::NMFALSFactorizer>
CF(const arma::sp_mat& data,
FactorizerType factorizer = FactorizerType(),
const size_t numUsersForSimilarity = 5,
const size_t rank = 0,
const typename boost::disable_if_c<
FactorizerTraits<FactorizerType>::UsesCoordinateList>::type* = 0);
/**
* Train the CF model (i.e. factorize the input matrix) using the parameters
* that have already been set for the model (specifically, the rank
* parameter), and optionally, using the given FactorizerType.
*
* @param data Input dataset; coordinate list or dense matrix.
* @param factorizer Instantiated factorizer.
*/
template<typename FactorizerType = amf::NMFALSFactorizer>
void Train(const arma::mat& data,
FactorizerType factorizer = FactorizerType());
/**
* Train the CF model (i.e. factorize the input matrix) using the parameters
* that have already been set for the model (specifically, the rank
* parameter), and optionally, using the given FactorizerType.
*
* @param data Sparse matrix data.
* @param factorizer Instantiated factorizer.
*/
template<typename FactorizerType = amf::NMFALSFactorizer>
void Train(const arma::sp_mat& data,
FactorizerType factorizer = FactorizerType(),
const typename boost::disable_if_c<
FactorizerTraits<FactorizerType>::UsesCoordinateList>::type*
= 0);
//! Sets number of users for calculating similarity.
void NumUsersForSimilarity(const size_t num)
{
if (num < 1)
{
Log::Warn << "CF::NumUsersForSimilarity(): invalid value (< 1) "
"ignored." << std::endl;
return;
}
this->numUsersForSimilarity = num;
}
//! Gets number of users for calculating similarity.
size_t NumUsersForSimilarity() const
{
return numUsersForSimilarity;
}
//! Sets rank parameter for matrix factorization.
void Rank(const size_t rankValue)
{
this->rank = rankValue;
}
//! Gets rank parameter for matrix factorization.
size_t Rank() const
{
return rank;
}
//! Get the User Matrix.
const arma::mat& W() const { return w; }
//! Get the Item Matrix.
const arma::mat& H() const { return h; }
//! Get the cleaned data matrix.
const arma::sp_mat& CleanedData() const { return cleanedData; }
/**
* Generates the given number of recommendations for all users.
*
* @param numRecs Number of Recommendations
* @param recommendations Matrix to save recommendations into.
*/
void GetRecommendations(const size_t numRecs,
arma::Mat<size_t>& recommendations);
/**
* Generates the given number of recommendations for the specified users.
*
* @param numRecs Number of Recommendations
* @param recommendations Matrix to save recommendations
* @param users Users for which recommendations are to be generated
*/
void GetRecommendations(const size_t numRecs,
arma::Mat<size_t>& recommendations,
arma::Col<size_t>& users);
//! Converts the User, Item, Value Matrix to User-Item Table
static void CleanData(const arma::mat& data, arma::sp_mat& cleanedData);
/**
* Predict the rating of an item by a particular user.
*
* @param user User to predict for.
* @param item Item to predict for.
*/
double Predict(const size_t user, const size_t item) const;
/**
* Predict ratings for each user-item combination in the given coordinate list
* matrix. The matrix 'combinations' should have two rows and number of
* columns equal to the number of desired predictions. The first element of
* each column corresponds to the user index, and the second element of each
* column corresponds to the item index. The output vector 'predictions' will
* have length equal to combinations.n_cols, and predictions[i] will be equal
* to the prediction for the user/item combination in combinations.col(i).
*
* @param combinations User/item combinations to predict.
* @param predictions Predicted ratings for each user/item combination.
*/
void Predict(const arma::Mat<size_t>& combinations,
arma::vec& predictions) const;
/**
* Serialize the CF model to the given archive.
*/
template<typename Archive>
void Serialize(Archive& ar, const unsigned int /* version */);
private:
//! Number of users for similarity.
size_t numUsersForSimilarity;
//! Rank used for matrix factorization.
size_t rank;
//! User matrix.
arma::mat w;
//! Item matrix.
arma::mat h;
//! Cleaned data matrix.
arma::sp_mat cleanedData;
//! Candidate represents a possible recommendation (value, item).
typedef std::pair<double, size_t> Candidate;
//! Compare two candidates based on the value.
struct CandidateCmp {
bool operator()(const Candidate& c1, const Candidate& c2)
{
return c1.first > c2.first;
};
};
}; // class CF
} // namespace cf
} // namespace mlpack
// Include implementation of templated functions.
#include "cf_impl.hpp"
#endif
|