/usr/include/mlpack/methods/amf/amf.hpp is in libmlpack-dev 2.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 | /**
* @file amf.hpp
* @author Sumedh Ghaisas
* @author Mohan Rajendran
* @author Ryan Curtin
*
* Alternating Matrix Factorization
*
* The AMF (alternating matrix factorization) class, from which more commonly
* known techniques such as incremental SVD, NMF, and batch-learning SVD can be
* derived.
*
* mlpack is free software; you may redistribute it and/or modify it under the
* terms of the 3-clause BSD license. You should have received a copy of the
* 3-clause BSD license along with mlpack. If not, see
* http://www.opensource.org/licenses/BSD-3-Clause for more information.
*/
#ifndef MLPACK_METHODS_AMF_AMF_HPP
#define MLPACK_METHODS_AMF_AMF_HPP
#include <mlpack/core.hpp>
#include <mlpack/methods/amf/update_rules/nmf_mult_dist.hpp>
#include <mlpack/methods/amf/update_rules/nmf_als.hpp>
#include <mlpack/methods/amf/update_rules/svd_batch_learning.hpp>
#include <mlpack/methods/amf/update_rules/svd_incomplete_incremental_learning.hpp>
#include <mlpack/methods/amf/update_rules/svd_complete_incremental_learning.hpp>
#include <mlpack/methods/amf/init_rules/random_init.hpp>
#include <mlpack/methods/amf/init_rules/random_acol_init.hpp>
#include <mlpack/methods/amf/termination_policies/simple_residue_termination.hpp>
#include <mlpack/methods/amf/termination_policies/simple_tolerance_termination.hpp>
namespace mlpack {
namespace amf /** Alternating Matrix Factorization **/ {
/**
* This class implements AMF (alternating matrix factorization) on the given
* matrix V. Alternating matrix factorization decomposes V in the form
* \f$ V \approx WH \f$ where W is called the basis matrix and H is called the
* encoding matrix. V is taken to be of size n x m and the obtained W is n x r
* and H is r x m. The size r is called the rank of the factorization.
*
* The implementation requires three template types; the first contains the
* policy used to determine when the algorithm has converged; the second
* contains the initialization rule for the W and H matrix; the last contains
* the update rule to be used during each iteration. This templatization allows
* the user to try various update rules, initialization rules, and termination
* policies (including ones not supplied with mlpack) for factorization. By
* default, the template parameters to AMF implement non-negative matrix
* factorization with the multiplicative distance update.
*
* A simple example of how to run AMF (or NMF) is shown below.
*
* @code
* extern arma::mat V; // Matrix that we want to perform LMF on.
* size_t r = 10; // Rank of decomposition
* arma::mat W; // Basis matrix
* arma::mat H; // Encoding matrix
*
* AMF<> amf; // Default options: NMF with multiplicative distance update rules.
* amf.Apply(V, r, W, H);
* @endcode
*
* @tparam TerminationPolicy The policy to use for determining when the
* factorization has converged.
* @tparam InitializationRule The initialization rule for initializing W and H
* matrix.
* @tparam UpdateRule The update rule for calculating W and H matrix at each
* iteration.
*
* @see NMFMultiplicativeDistanceUpdate, SimpleResidueTermination
*/
template<typename TerminationPolicyType = SimpleResidueTermination,
typename InitializationRuleType = RandomAcolInitialization<>,
typename UpdateRuleType = NMFMultiplicativeDistanceUpdate>
class AMF
{
public:
/**
* Create the AMF object and (optionally) set the parameters which AMF will
* run with. The minimum residue refers to the root mean square of the
* difference between two subsequent iterations of the product W * H. A low
* residue indicates that subsequent iterations are not producing much change
* in W and H. Once the residue goes below the specified minimum residue, the
* algorithm terminates.
*
* @param initializationRule Optional instantiated InitializationRule object
* for initializing the W and H matrices.
* @param updateRule Optional instantiated UpdateRule object; this parameter
* is useful when the update rule for the W and H vector has state that
* it needs to store (i.e. HUpdate() and WUpdate() are not static
* functions).
* @param terminationPolicy Optional instantiated TerminationPolicy object.
*/
AMF(const TerminationPolicyType& terminationPolicy = TerminationPolicyType(),
const InitializationRuleType& initializeRule = InitializationRuleType(),
const UpdateRuleType& update = UpdateRuleType());
/**
* Apply Alternating Matrix Factorization to the provided matrix.
*
* @param V Input matrix to be factorized.
* @param W Basis matrix to be output.
* @param H Encoding matrix to output.
* @param r Rank r of the factorization.
*/
template<typename MatType>
double Apply(const MatType& V,
const size_t r,
arma::mat& W,
arma::mat& H);
//! Access the termination policy.
const TerminationPolicyType& TerminationPolicy() const
{ return terminationPolicy; }
//! Modify the termination policy.
TerminationPolicyType& TerminationPolicy() { return terminationPolicy; }
//! Access the initialization rule.
const InitializationRuleType& InitializeRule() const
{ return initializationRule; }
//! Modify the initialization rule.
InitializationRuleType& InitializeRule() { return initializationRule; }
//! Access the update rule.
const UpdateRuleType& Update() const { return update; }
//! Modify the update rule.
UpdateRuleType& Update() { return update; }
private:
//! Termination policy.
TerminationPolicyType terminationPolicy;
//! Instantiated initialization Rule.
InitializationRuleType initializationRule;
//! Instantiated update rule.
UpdateRuleType update;
}; // class AMF
typedef amf::AMF<amf::SimpleResidueTermination,
amf::RandomAcolInitialization<>,
amf::NMFALSUpdate> NMFALSFactorizer;
//! Add simple typedefs
#ifdef MLPACK_USE_CXX11
/**
* SVDBatchFactorizer factorizes given matrix V into two matrices W and H by
* gradient descent. SVD batch learning is described in paper 'A Guide to
* singular Value Decomposition' by Chih-Chao Ma.
*
* @see SVDBatchLearning
*/
template<class MatType>
using SVDBatchFactorizer = amf::AMF<amf::SimpleResidueTermination,
amf::RandomAcolInitialization<>,
amf::SVDBatchLearning>;
/**
* SVDIncompleteIncrementalFactorizer factorizes given matrix V into two
* matrices W and H by incomplete incremental gradient descent. SVD incomplete
* incremental learning is described in paper 'A Guide to singular Value
* Decomposition'
* by Chih-Chao Ma.
*
* @see SVDIncompleteIncrementalLearning
*/
template<class MatType>
using SVDIncompleteIncrementalFactorizer = amf::AMF<
amf::SimpleResidueTermination,
amf::RandomAcolInitialization<>,
amf::SVDIncompleteIncrementalLearning>;
/**
* SVDCompleteIncrementalFactorizer factorizes given matrix V into two matrices
* W and H by complete incremental gradient descent. SVD complete incremental
* learning is described in paper 'A Guide to singular Value Decomposition'
* by Chih-Chao Ma.
*
* @see SVDCompleteIncrementalLearning
*/
template<class MatType>
using SVDCompleteIncrementalFactorizer = amf::AMF<
amf::SimpleResidueTermination,
amf::RandomAcolInitialization<>,
amf::SVDCompleteIncrementalLearning<MatType>>;
#else // #ifdef MLPACK_USE_CXX11
/**
* SparseSVDBatchFactorizer factorizes given sparse matrix V into two matrices W
* and H by gradient descent. SVD batch learning is described in paper 'A Guide
* to singular Value Decomposition' by Chih-Chao Ma.
*
* @see SVDBatchLearning
*/
typedef amf::AMF<amf::SimpleResidueTermination,
amf::RandomAcolInitialization<>,
amf::SVDBatchLearning> SparseSVDBatchFactorizer;
/**
* SparseSVDBatchFactorizer factorizes given matrix V into two matrices W and H
* by gradient descent. SVD batch learning is described in paper 'A Guide to
* singular Value Decomposition' by Chih-Chao Ma.
*
* @see SVDBatchLearning
*/
typedef amf::AMF<amf::SimpleResidueTermination,
amf::RandomAcolInitialization<>,
amf::SVDBatchLearning> SVDBatchFactorizer;
/**
* SparseSVDIncompleteIncrementalFactorizer factorizes given sparse matrix V
* into two matrices W and H by incomplete incremental gradient descent. SVD
* incomplete incremental learning is described in paper 'A Guide to singular
* Value Decomposition' by Chih-Chao Ma.
*
* @see SVDIncompleteIncrementalLearning
*/
typedef amf::AMF<amf::SimpleResidueTermination,
amf::RandomAcolInitialization<>,
amf::SVDIncompleteIncrementalLearning>
SparseSVDIncompleteIncrementalFactorizer;
/**
* SVDIncompleteIncrementalFactorizer factorizes given matrix V into two
* matrices W and H by incomplete incremental gradient descent. SVD incomplete
* incremental learning is described in paper 'A Guide to singular Value
* Decomposition' by Chih-Chao Ma.
*
* @see SVDIncompleteIncrementalLearning
*/
typedef amf::AMF<amf::SimpleResidueTermination,
amf::RandomAcolInitialization<>,
amf::SVDIncompleteIncrementalLearning>
SVDIncompleteIncrementalFactorizer;
/**
* SparseSVDCompleteIncrementalFactorizer factorizes given sparse matrix V
* into two matrices W and H by complete incremental gradient descent. SVD
* complete incremental learning is described in paper 'A Guide to singular
* Value Decomposition' by Chih-Chao Ma.
*
* @see SVDCompleteIncrementalLearning
*/
typedef amf::AMF<amf::SimpleResidueTermination,
amf::RandomAcolInitialization<>,
amf::SVDCompleteIncrementalLearning<arma::sp_mat> >
SparseSVDCompleteIncrementalFactorizer;
/**
* SVDCompleteIncrementalFactorizer factorizes given matrix V into two matrices
* W and H by complete incremental gradient descent. SVD complete incremental
* learning is described in paper 'A Guide to singular Value Decomposition'
* by Chih-Chao Ma.
*
* @see SVDCompleteIncrementalLearning
*/
typedef amf::AMF<amf::SimpleResidueTermination,
amf::RandomAcolInitialization<>,
amf::SVDCompleteIncrementalLearning<arma::mat> >
SVDCompleteIncrementalFactorizer;
#endif // #ifdef MLPACK_USE_CXX11
} // namespace amf
} // namespace mlpack
// Include implementation.
#include "amf_impl.hpp"
#endif // MLPACK_METHODS_AMF_AMF_HPP
|