This file is indexed.

/usr/include/m4rie/mzd_ptr.h is in libm4rie-dev 20150908-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#ifndef M4RIE_MZD_PTR_H
#define M4RIE_MZD_PTR_H

/******************************************************************************
*
*            M4RIE: Linear Algebra over GF(2^e)
*
*    Copyright (C) 2013 Martin Albrecht <martinralbrecht@googlemail.com>
*
*  Distributed under the terms of the GNU General Public License (GEL)
*  version 2 or higher.
*
*    This code is distributed in the hope that it will be useful,
*    but WITHOUT ANY WARRANTY; without even the implied warranty of
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
*    General Public License for more details.
*
*  The full text of the GPL is available at:
*
*                  http://www.gnu.org/licenses/
******************************************************************************/

#include <stdarg.h>
#include <m4rie/gf2e.h>
#include <m4ri/djb.h>

/**
 * \brief Add A to coefficient of X^t but perform modular reductions on the fly.
 *
 * (A + X^t % minpoly)
 *
 * \param ff Finite field (must not be NULL)
 * \param A Matrix
 * \param X Matrix list
 * \param t Integer >= 0 (degree)
 */

static inline void _mzd_ptr_add_modred(const gf2e *ff, const mzd_t *A, mzd_t **X, const int t) {
  if (mzd_is_zero(A))
    return;

  if ((ff==NULL) || (t < ff->degree)) {
    mzd_add(X[t], X[t], A);
    return;
  }

  word pow_gen = ff->pow_gen[t];

  for(int i=0; i<ff->degree; i++) {
    if (pow_gen & (1<<i))
       mzd_add(X[i],X[i],A);
  }
}

/**
 * \brief Add A to n coefficients but perform modular reductions on the fly (if ff != NULL).
 *
 * \param ff Finite field (may be NULL)
 * \param A Matrix
 * \param X Matrix list
 * \param n Integer > 0
 */

static inline mzd_t *_mzd_ptr_add_to_all(const gf2e *ff, mzd_t *A, mzd_t **X, const int n, ...) {
  va_list b_list;
  va_start( b_list, n );

  if (ff) 
    for( int i = 0 ; i < n; i++ ) {
      int t = va_arg(b_list, int);
      _mzd_ptr_add_modred(ff, A, X, t);
    }
  else
    for( int i = 0 ; i < n; i++ ) {
      int t = va_arg(b_list, int);
      mzd_add(X[t], X[t], A);
    }

  va_end( b_list );
  return A;
}

static inline void _mzd_ptr_add(mzd_t **c, const mzd_t **a, const mzd_t **b, const deg_t length) {
  switch(length) {
  case 32: mzd_add(c[31], a[31], b[31]);
  case 31: mzd_add(c[30], a[30], b[30]);
  case 30: mzd_add(c[29], a[29], b[29]);
  case 29: mzd_add(c[28], a[28], b[28]);
  case 28: mzd_add(c[27], a[27], b[27]);
  case 27: mzd_add(c[26], a[26], b[26]);
  case 26: mzd_add(c[25], a[25], b[25]);
  case 25: mzd_add(c[24], a[24], b[24]);
  case 24: mzd_add(c[23], a[23], b[23]);
  case 23: mzd_add(c[22], a[22], b[22]);
  case 22: mzd_add(c[21], a[21], b[21]);
  case 21: mzd_add(c[20], a[20], b[20]);
  case 20: mzd_add(c[19], a[19], b[19]);
  case 19: mzd_add(c[18], a[18], b[18]);
  case 18: mzd_add(c[17], a[17], b[17]);
  case 17: mzd_add(c[16], a[16], b[16]);
  case 16: mzd_add(c[15], a[15], b[15]);
  case 15: mzd_add(c[14], a[14], b[14]);
  case 14: mzd_add(c[13], a[13], b[13]);
  case 13: mzd_add(c[12], a[12], b[12]);
  case 12: mzd_add(c[11], a[11], b[11]);
  case 11: mzd_add(c[10], a[10], b[10]);
  case 10: mzd_add(c[ 9], a[ 9], b[ 9]);
  case  9: mzd_add(c[ 8], a[ 8], b[ 8]);
  case  8: mzd_add(c[ 7], a[ 7], b[ 7]);
  case  7: mzd_add(c[ 6], a[ 6], b[ 6]);
  case  6: mzd_add(c[ 5], a[ 5], b[ 5]);
  case  5: mzd_add(c[ 4], a[ 4], b[ 4]);
  case  4: mzd_add(c[ 3], a[ 3], b[ 3]);
  case  3: mzd_add(c[ 2], a[ 2], b[ 2]);
  case  2: mzd_add(c[ 1], a[ 1], b[ 1]);
  case  1: mzd_add(c[ 0], a[ 0], b[ 0]);
  case  0:
    break;
  default:
    for(deg_t i=0; i<length; i++)
      mzd_add(c[ i], a[ i], b[ i]);
  }
}

/** karatsuba.c **/

/**
 * \brief \f$ X += A \cdot B \f$ over \GF4 using 3 multiplications over \GF2 and 2 temporary \GF2 matrices.
 *
 * If no finite field is given, polynomial arithmetic with polynomials of degree 1 is performed. In
 * this case, X is expected to have at least length 3. If a finite field is given, then C is
 * expected to have at least length 2.
 *
 * The formula was taken from Peter L. Montgomery. "Five, Six, and
 * Seven-Term Karatsuba-Like Formulae" in IEEE TRANSACTIONS ON
 * COMPUTERS, VOL. 54, NO. 3, MARCH 2005/
 * 
 * \param ff Finite Field, may be NULL for polynomial arithmetic.
 * \param X Preallocated return matrix, of length >= 2 (ff != NULL) or >=3 (ff == NULL)
 * \param A Input matrix A, preallocated of length >= 2.
 * \param B Input matrix B, preallocated of length >= 2.
 *
 * \sa _mzd_ptr_addmul_karatsuba()
 *
 * \ingroup Multiplication
 */

void _mzd_ptr_addmul_karatsuba2(const gf2e *ff, mzd_t **X, const mzd_t **A, const mzd_t **B);

/**
 * \brief \f$ X += A \cdot B \f$ over \GF8 using 6 multiplications over \GF2 and 3 temporary \GF2 matrices..
 */

void _mzd_ptr_addmul_karatsuba3(const gf2e *ff, mzd_t **X, const mzd_t **A, const mzd_t **B);

/**
 * \brief \f$ X += A \cdot B \f$ over \GF16 using 9 multiplications over \GF2 and 3 temporary \GF2 matrices.
 */

void _mzd_ptr_addmul_karatsuba4(const gf2e *ff, mzd_t **X, const mzd_t **A, const mzd_t **B);

/**
 * \brief \f$ C += A \cdot B \f$ over \GF32 using 13 multiplications over \GF2 and 3 temporary \GF2 matrices..
 */

void _mzd_ptr_addmul_karatsuba5(const gf2e *ff, mzd_t **X, const mzd_t **A, const mzd_t **B);

/**
 * \brief \f$ C += A \cdot B \f$ over \GF64 using 17 multiplications over \GF2 and 3 temporary \GF2 matrices.
 */

void _mzd_ptr_addmul_karatsuba6(const gf2e *ff, mzd_t **X, const mzd_t **A, const mzd_t **B);

/**
 * \brief \f$ X += A \cdot B \f$ over \GF128 using 22 multiplications over \GF2 and 3 temporary \GF2 matrices.
 */

void _mzd_ptr_addmul_karatsuba7(const gf2e *ff, mzd_t **X, const mzd_t **A, const mzd_t **B);

/**
 * \brief \f$ X += A \cdot B \f$ over \GF256 using 27 multiplications over \GF2 and 3 temporary \GF2 matrices.
 */

void _mzd_ptr_addmul_karatsuba8(const gf2e *ff, mzd_t **X, const mzd_t **A, const mzd_t **B);

/**
 * \brief \f$ X += A \cdot B \f$ over \GF512 using 31 multiplications over \GF2 and 3 temporary \GF2 matrices.
 */

void _mzd_ptr_addmul_karatsuba9(const gf2e *ff, mzd_t **X, const mzd_t **A, const mzd_t **B);

/**
 * \brief \f$ X += A \cdot B \f$ over \GF1024 using 36 multiplications over \GF2 and 3 temporary \GF2 matrices.
 */

void _mzd_ptr_addmul_karatsuba10(const gf2e *ff, mzd_t **X, const mzd_t **A, const mzd_t **B);

/**
 * \brief \f$ X += A \cdot B \f$ over \GF2048 using 40 multiplications over \GF2 and 3 temporary \GF2 matrices.
 */

void _mzd_ptr_addmul_karatsuba11(const gf2e *ff, mzd_t **X, const mzd_t **A, const mzd_t **B);

/**
 * \brief \f$ X += A \cdot B \f$ over \GF4096 using 45 multiplications over \GF2 and 3 temporary \GF2 matrices.
 */

void _mzd_ptr_addmul_karatsuba12(const gf2e *ff, mzd_t **X, const mzd_t **A, const mzd_t **B);

/**
 * \brief \f$ X += A \cdot B \f$ over \GF8192 using 49 multiplications over \GF2 and 3 temporary \GF2 matrices.
 */

void _mzd_ptr_addmul_karatsuba13(const gf2e *ff, mzd_t **X, const mzd_t **A, const mzd_t **B);

/**
 * \brief \f$ X += A \cdot B \f$ over \GF16384 using 55 multiplications over \GF2 and 3 temporary \GF2 matrices.
 */

void _mzd_ptr_addmul_karatsuba14(const gf2e *ff, mzd_t **X, const mzd_t **A, const mzd_t **B);

/**
 * \brief \f$ X += A \cdot B \f$ over \GF32768 using 60 multiplications over \GF2 and 3 temporary \GF2 matrices.
 */

void _mzd_ptr_addmul_karatsuba15(const gf2e *ff, mzd_t **X, const mzd_t **A, const mzd_t **B);

/**
 * \brief \f$ X += A \cdot B \f$ over \GF65536 using 64 multiplications over \GF2 and 3 temporary \GF2 matrices.
 */

void _mzd_ptr_addmul_karatsuba16(const gf2e *ff, mzd_t **X, const mzd_t **A, const mzd_t **B);


/**
 * W = m*V
 *
 * Apply the linear map m to V (considered as a vector) and write the result to W.
 *
 * \param m Linear map
 * \param W Output vector of matrices mod 2.
 * \oaram V Input vector of matrices mod 2.
 */

void djb_apply_mzd_ptr(djb_t *m, mzd_t **W, const mzd_t **V);

#endif //M4RIE_MZD_PTR_H