This file is indexed.

/usr/include/m4rie/conversion.h is in libm4rie-dev 20150908-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
/**
 * \file conversion.h
 *
 * \brief Conversion between mzed_t and mzd_slice_t
 *
 * \author Martin Albrecht <martinralbrecht@googlemail.com>
 */

#ifndef M4RIE_CONVERSION_H
#define M4RIE_CONVERSION_H

/******************************************************************************
*
*            M4RIE: Linear Algebra over GF(2^e)
*
*    Copyright (C) 2011 Martin Albrecht <martinralbrecht@googlemail.com>
*
*  Distributed under the terms of the GNU General Public License (GEL)
*  version 2 or higher.
*
*    This code is distributed in the hope that it will be useful,
*    but WITHOUT ANY WARRANTY; without even the implied warranty of
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
*    General Public License for more details.
*
*  The full text of the GPL is available at:
*
*                  http://www.gnu.org/licenses/
******************************************************************************/

#include <m4ri/m4ri.h>
#include <m4rie/mzed.h>
#include <m4rie/mzd_slice.h>

/**
 * \brief Pack a bitslice matrix into a packed represenation.
 *
 * \param A Matrix over \GF2E or NULL
 * \param Z Bitslice matrix over \GF2E
 *
 * \ingroup Constructions
 */

mzed_t *mzed_cling(mzed_t *A, const mzd_slice_t *Z);

/**
 * \brief Unpack the matrix Z into bitslice representation.
 *
 * \param A Bitslice matrix or NULL
 * \param Z Input matrix
 *
 * \ingroup Constructions
 */

mzd_slice_t *mzed_slice(mzd_slice_t *A, const mzed_t *Z);

/**
 * \brief Unpack the matrix Z over GF(2^2) into bitslice representation.
 *
 * Elements in GF(2^2) can be represented as x*a + y where a is a root
 * of x^2 + x + 1. A0 contains the coefficients for x while A1
 * contains the coefficients for y.
 *
 * \param A Zero bitslice matrix over GF(2^2)
 * \param Z Matrix over GF(2^2)
 */

mzd_slice_t *_mzed_slice2(mzd_slice_t *A, const mzed_t *Z);

/**
 * \brief Unpack the matrix Z over \GF2E into bitslice representation.
 *
 * \param A Zero bitslice matrix over \GF2E
 * \param Z Matrix over \GF2E
 */

mzd_slice_t *_mzed_slice4(mzd_slice_t *A, const mzed_t *Z);

/**
 * \brief Unpack the matrix Z over \GF2E into bitslice representation.
 *
 * \param A Zero bitslice matrix over \GF2E
 * \param Z Matrix over \GF2E
 */

mzd_slice_t *_mzed_slice8(mzd_slice_t *A, const mzed_t *Z);

/**
 * \brief Unpack the matrix Z over \GF2E into bitslice representation.
 *
 * \param A Zero bitslice matrix over \GF2E
 * \param Z Matrix over \GF2E
 */

mzd_slice_t *_mzed_slice16(mzd_slice_t *A, const mzed_t *Z);

/**
 * \brief Pack a bitslice matrix into a classical represenation over GF(2^2).
 *
 * Elements in GF(2^2) can be represented as c_1*a + c_0 where a is a
 * root of x^2 + x + 1. A1 contains the coefficients for c_1 while A0
 * contains the coefficients for c_0.
 *
 * \param A Matrix over GF(2^2), must be zero
 * \param Z Bitslice matrix over GF(2^2)
 */

mzed_t *_mzed_cling2(mzed_t *A, const mzd_slice_t *Z);


/**
 * \brief Pack a bitslice matrix into a classical represenation over \GF2E for 2 < e <= 4.
 *
 * \param A Matrix over \GF2E, must be zero
 * \param Z Bitslice matrix over \GF2E
 */

mzed_t *_mzed_cling4(mzed_t *A, const mzd_slice_t *Z);

/**
 * \brief Pack a bitslice matrix into a classical represenation over \GF2E for 4 < e <= 8.
 *
 * \param A Matrix over \GF2E, must be zero
 * \param Z Bitslice matrix over \GF2E
 */

mzed_t *_mzed_cling8(mzed_t *A, const mzd_slice_t *Z);

/**
 * \brief Pack a bitslice matrix into a classical represenation over \GF2E for 8 < e <= 16.
 *
 * \param A Matrix over \GF2E, must be zero
 * \param Z Bitslice matrix over \GF2E
 */

mzed_t *_mzed_cling16(mzed_t *A, const mzd_slice_t *Z);

/**
 * \brief Compute C += A*B using Karatsuba multiplication of polynomials over GF(2).
 *
 * \param C Preallocated return matrix, may be NULL for automatic creation.
 * \param A Input matrix A.
 * \param B Input matrix B.
 *
 * \sa _mzd_slice_addmul_karatsuba
 */

static inline mzed_t *_mzed_addmul_karatsuba(mzed_t *C, const mzed_t *A, const mzed_t *B) {
  mzd_slice_t *As,*Bs,*Cs;
  if(C)
    Cs = mzed_slice(NULL,C);
  else
    Cs = NULL;
  As = mzed_slice(NULL,A);
  Bs = mzed_slice(NULL,B);

  Cs = _mzd_slice_addmul_karatsuba(Cs, As, Bs);

  C = mzed_cling(C, Cs);

  mzd_slice_free(As);
  mzd_slice_free(Bs);
  mzd_slice_free(Cs);
  return C;
}

/**
 * \brief Compute C = A*B.
 *
 * \param C Preallocated return matrix, may be NULL for automatic creation.
 * \param A Input matrix A.
 * \param B Input matrix B.
 *
 * \sa _mzd_slice_mul_karatsuba
 */

static inline mzed_t *mzed_mul_karatsuba(mzed_t *C, const mzed_t *A, const mzed_t *B) {
  if (A->ncols != B->nrows || A->finite_field != B->finite_field) 
    m4ri_die("mzed_mul_karatsuba: rows, columns and fields must match.\n");
  if (C != NULL) {
    if (C->finite_field != A->finite_field || C->nrows != A->nrows || C->ncols != B->ncols) 
      m4ri_die("mzed_mul_karatsuba: rows and columns of returned matrix must match.\n");
    mzed_set_ui(C,0);
  }
  return _mzed_addmul_karatsuba(C, A, B);
}

/**
 * \brief Compute C += A*B.
 *
 * \param C Preallocated return matrix.
 * \param A Input matrix A.
 * \param B Input matrix B.
 */

static inline mzed_t *mzed_addmul_karatsuba(mzed_t *C, const mzed_t *A, const mzed_t *B) {
  assert(C != NULL);
  if (A->ncols != B->nrows || A->finite_field != B->finite_field) 
    m4ri_die("mzed_addmul_karatsuba: rows, columns and fields must match.\n");
  if (C->finite_field != A->finite_field || C->nrows != A->nrows || C->ncols != B->ncols) 
    m4ri_die("mzed_addmul_karatsuba: rows and columns of returned matrix must match.\n");
  return _mzed_addmul_karatsuba(C, A, B);
}

/**
 * \brief Compute C += A*B using Bilinear Maps over GF(2).
 *
 * \param C Preallocated return matrix, may be NULL for automatic creation.
 * \param A Input matrix A.
 * \param B Input matrix B.
 *
 * \sa _mzd_slice_addmul_blm
 */

static inline mzed_t *_mzed_addmul_blm(mzed_t *C, const mzed_t *A, const mzed_t *B) {
  mzd_slice_t *As,*Bs;
  As = mzed_slice(NULL,A);
  Bs = mzed_slice(NULL,B);

  mzd_slice_t *Ts = _mzd_slice_mul_blm(NULL, As, Bs, NULL);
  mzed_t *T = mzed_cling(NULL, Ts);
  mzd_slice_free(Ts);

  if (C) {
    C = mzed_add(C, C, T);
    mzed_free(T);
  } else {
    C = T;
  }

  mzd_slice_free(As);
  mzd_slice_free(Bs);
  return C;
}

/**
 * \brief Compute C = A*B.
 *
 * \param C Preallocated return matrix, may be NULL for automatic creation.
 * \param A Input matrix A.
 * \param B Input matrix B.
 *
 * \sa _mzd_slice_mul_blm
 */

static inline mzed_t *mzed_mul_blm(mzed_t *C, const mzed_t *A, const mzed_t *B) {
  if (A->ncols != B->nrows || A->finite_field != B->finite_field) 
    m4ri_die("mzed_mul_blm: rows, columns and fields must match.\n");
  if (C != NULL) {
    if (C->finite_field != A->finite_field || C->nrows != A->nrows || C->ncols != B->ncols) 
      m4ri_die("mzed_mul_blm: rows and columns of returned matrix must match.\n");
    mzed_set_ui(C,0);
  }
  return _mzed_addmul_blm(C, A, B);
}

/**
 * \brief Compute C += A*B.
 *
 * \param C Preallocated return matrix.
 * \param A Input matrix A.
 * \param B Input matrix B.
 */

static inline mzed_t *mzed_addmul_blm(mzed_t *C, const mzed_t *A, const mzed_t *B) {
  assert(C != NULL);
  if (A->ncols != B->nrows || A->finite_field != B->finite_field) 
    m4ri_die("mzed_addmul_blm: rows, columns and fields must match.\n");
  if (C->finite_field != A->finite_field || C->nrows != A->nrows || C->ncols != B->ncols) 
    m4ri_die("mzed_addmul_blm: rows and columns of returned matrix must match.\n");
  return _mzed_addmul_blm(C, A, B);
}


/**
 * \brief Recale the row r in A by X starting c.
 *
 * \param A Matrix
 * \param r Row index.
 * \param c Column index.
 * \param x Multiplier
 *
 * \ingroup RowOperations
 */

static inline void mzd_slice_rescale_row(mzd_slice_t *A, rci_t r, rci_t c, word x) {
  mzd_slice_t *A_w = mzd_slice_init_window(A, r, 0, r+1, A->ncols);
  mzed_t *A_we = mzed_cling(NULL, A_w);

  mzed_rescale_row(A_we, r, c, x);

  mzed_slice(A_w, A_we);
  mzed_free(A_we);
  mzd_slice_free_window(A_w);
}

///@cond INTERNAL

/*
 * a bunch of constants to make code more readable
 */

static const word x80008000 = 0x8000800080008000ULL;
static const word x80808080 = 0x8080808080808080ULL;
static const word x88888888 = 0x8888888888888888ULL;
static const word xaaaaaaaa = 0xaaaaaaaaaaaaaaaaULL;
static const word xcccccccc = 0xccccccccccccccccULL;
static const word xc0c0c0c0 = 0xc0c0c0c0c0c0c0c0ULL;
static const word xf0f0f0f0 = 0xf0f0f0f0f0f0f0f0ULL;
static const word xff00ff00 = 0xff00ff00ff00ff00ULL;
static const word xffff0000 = 0xffff0000ffff0000ULL;
static const word xffffffff = 0xffffffff00000000ULL;
static const word x__left04 = 0xf000000000000000ULL;
static const word x__left08 = 0xff00000000000000ULL;
static const word x__left16 = 0xffff000000000000ULL;
static const word x__left32 = 0xffffffff00000000ULL;

///@endcond

#endif //M4RIE_CONVERSION_H