This file is indexed.

/usr/include/linbox/matrix/sliced3/dense-sliced.h is in liblinbox-dev 1.4.2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
#ifndef __DENSE_SLICED_H
#define __DENSE_SLICED_H

#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/fcntl.h>

/**
  The matrix class Sliced is defined.
  It adheres to the LinBox dense matrix interface.

  It depends on SlicedBase, also defined here, which packs GF(3) elements
  into a pair of ints. The int type is a template parameter.
*/

#include "dense-matrix.h"
//#include <linbox/util/timer.h>
//#include "sliced-stepper.h"


namespace LinBox {

/* SLICED BASE CODE
   SlicedBase implements functios on a vector of GF(3) elements.
   T is an integer type of some length n.
   The vectors are of length n, packed into two T words in sliced fashion.
   (Each element partakes of one bit from b0 and one bit from b1).

   Most of the SlicedBase functios are in C++ operator form.
 */
template<class T>
struct SlicedBase
{
public:
	T& bits0(){return b0;}
	T& bits1(){return b1;}

	SlicedBase & operator=(const T &rhs){
		b0 = rhs;
		b1 = rhs;
		return *this;
	}

	SlicedBase & operator=(const SlicedBase &rhs){
		b0 = rhs.b0;
		b1 = rhs.b1;
		return *this;
	}

	//  only nontrivial multiplication in F(3) is *=2
	//  which is negation, which is word swap
	//  between the bits
	SlicedBase & operator*=(const T &two){
		//  this is multiplication by two only!!!!
		//  we never even read the arg.
		b1 ^= b0;
		return *this;
	}

	SlicedBase operator*(const T &two) const{
		return SlicedBase(*this) *= two;
	}

	//  used for masking both words
	SlicedBase & operator&=(const T &mask){
		b1 &= mask;
		b0 &= mask;
		return *this;
	}

	SlicedBase operator & (const T &rhs){
		return SlicedBase(*this) &= rhs;
	}

	//  used for shifting both words
	SlicedBase & operator>>=(const T &shift){
		b1 >>= shift;
		b0 >>= shift;
		return *this;
	}

	SlicedBase operator >> (const T &rhs){
		return SlicedBase(*this) >>= rhs;
	}

	//  used for shifting both words
	SlicedBase & operator<<=(const T &shift){
		b1 <<= shift;
		b0 <<= shift;
		return *this;
	}

	SlicedBase operator << (const T &rhs){
		return SlicedBase(*this) <<= rhs;
	}

	//  used for combining value into both words
	SlicedBase & operator|=(const T &val){
		b1 |= val;
		b0 |= val;
		return *this;
	}

	//  used for combining two units
	SlicedBase & operator|=(const SlicedBase &rhs){
		b1 |= rhs.b1;
		b0 |= rhs.b0;
		return *this;
	}

	SlicedBase & operator+=(const SlicedBase &rhs){
		T a = b0 ^ rhs.b1;
		T b = b1 ^ rhs.b0;
		T s = a ^ b1;
		T t = b ^ rhs.b1;
		b1 = a & b;
		b0 = s | t;

		return *this;
	}

	const SlicedBase operator+(const SlicedBase &rhs){
		return SlicedBase(*this) += rhs;
	}

	//  comparison ops
	bool operator==(const SlicedBase &rhs){
		return b0 == rhs.bo && b1 == rhs.b1;
	}

	//  used for combining two units
	bool operator!=(const SlicedBase &rhs){
		return b0 != rhs.b0 || b1 != rhs.b1;
	}

	SlicedBase & zero(){
		b0 = 0;
		b1 = 0;
		return *this;
	}

//protected:
	T b0;
	T b1;
};

/**
	The Sliced Matrix class
	_Domain must be  a GF(3) rep, BaseT must be an unsigned int type.
	TODO more docs, discuss row/col slicing
*/
template <class _Domain>
class Sliced : public DenseMat<SlicedBase<typename _Domain::Word_T> >
{
public:
	typedef _Domain Domain;
	typedef typename Domain::Scalar Scalar;
	typedef typename Domain::Word_T SlicedWord;
	typedef SlicedBase<SlicedWord> SlicedUnit;

	typedef DenseMat<SlicedBase<typename _Domain::Word_T> > Base_T;
	using Base_T::rawBegin;
	using Base_T::rawEnd;
	using Base_T::rowBegin;
	using Base_T::rowEnd;
	using Base_T::_stride;
	using Base_T::_rep;
	using Base_T::_alloc;
	typedef typename Base_T::RawIterator RawIterator;
	typedef Base_T Matrix;

	enum op_t { ADD, SMUL, AXPY, ZERO, COPY };

	Sliced() : Matrix(), _domain(Domain()), _m(0), _n(0), _colPacked(false),
		_SIZE(8*sizeof(SlicedWord)), _sub(false) {}

	Sliced(Domain d) : Matrix(), _domain(d), _m(0), _n(0), _colPacked(false),
		_SIZE(8*sizeof(SlicedWord)), _sub(false) {}

	//  Constructor taking dims and bool defaulting ROWPACKED
	Sliced (Domain d, size_t m, size_t n, bool colP = false) :
		Matrix(), _domain(d), _m(m), _n(n), _colPacked(colP), _i(0),
			_SIZE(8*sizeof(SlicedWord)),
		_j(0), _loff(0), _roff(0), _sub(0) {
			Matrix::init(colP ? (m + _SIZE - 1)/_SIZE : m,
					colP ? n : (n + _SIZE - 1)/_SIZE);
	}

	//  need to override parent size, because we are a different size
	void size(size_t m = 0, size_t n = 0, bool cp = false){
		_m = m; _n = n; _colPacked = cp;
		_i = _j = _roff = _loff = _sub = 0;

		if(_colPacked)
			Matrix::size((m + _SIZE - 1)/_SIZE, n);
		else
			Matrix::size(m, (n + _SIZE - 1)/_SIZE);
	}

	//  need to override parent inits, because we are a different size
	void init(size_t m = 0, size_t n = 0) {
		_m = m; _n = n;
		_i = _j = _roff = _loff = _sub = 0;
 		if(_colPacked)
			Matrix::size((m + _SIZE - 1)/_SIZE, n);
		else
			Matrix::init(m, (n + _SIZE - 1)/_SIZE);
	}

	void init(size_t m, size_t n, const Scalar &filler){
		init(m,n);

		//  TODO stepper functionality, more efficient.
		for(size_t i=0; i<m; ++i)
			for(size_t j=0; j<n; ++j)
				setEntry(i, j, filler);
	}

	void shiftSubMatDown(int i) {
		_i=i+_i;
		_rep=_rep+i*_stride;
	}

	Sliced & submatrix(Sliced &other, size_t i, size_t j, size_t m, size_t n){
		_m = m;
		_n = n;
		_colPacked = other._colPacked;
		_i = i;
		_sub = true;

		size_t headStart = other._loff ? _SIZE - other._loff : 0;
		_j = j + headStart;
		//  determine in which of parents' columns do we begin
		size_t firstCol =  _j/_SIZE;

		_loff = (_SIZE-(_j%_SIZE))%_SIZE;  // could prob. omit final mod?
		_roff = (_j+n)%_SIZE;

		// _roff really an offset? or just goes to "parent" matrix's normal end
		//if( (_j+n) == other.coldim() )
		//	_roff = 0;
			//  AND IF our super matrix is < SIZE, special case we don't account for
			/*  ^ this can cause the writing of a superfluous zero word in s_write_bin
				if last word is next to first word in a submat */

		//std::cerr << _j << " " << n << other.coldim();
		//cerr << "LOFF: " << _loff << " ROFF: " << _roff << endl;
		//std::cerr << "ijmn?" << i << " " << j << " " << m << " " << n << std::endl;
		//cerr << "firstCol: " << firstCol << " _j: " << _j << " cols(): " << _cols << " other.cols(): " << other.cols() << endl;

		//TODO colpacked version
		this->Matrix::submatrix(other, i, firstCol, m, (n + (_j%_SIZE) + (_SIZE - 1))/_SIZE);

		return *this;
	}

	const Domain& field() const {return _domain;}
	Domain& field() {return _domain;}

	//  blindly assumes "other" matrix is rowpacked...
	Sliced (Sliced &other, size_t i, size_t j, size_t m, size_t n) : Matrix(), _domain(other._domain) {
		//  we currently can't handle submatrices that reside entirely within
		//  a single sliced unit, width-wise...
		//  meaning < _SIZE columns, while both borders are in the same word
		size_t begin = j+other._loff;
		size_t end = begin+n;
		size_t endTest = other._n < _SIZE ? other._n : _SIZE;
		//  check if we're small enough, then check if we're on a border (which is OK)
		if(n < _SIZE && begin%_SIZE && end%endTest){
			size_t test = other._loff ? other._loff : _SIZE;
			if((j+n) <= test){
				std::cerr << "Unsupported submatrix request.  Submatrix entirely within a word" <<
					" while not aligned with a left or right border" <<	std::endl;
				//exit(-1);
			}
		}

		//  passed the security checkpoint.  on to business
		submatrix(other, i, j, m, n);
	}

//  incl functions to handle specialized cases (where submats are not word-aligned)
#include "dense-sliced.inl"

	//  typical addin, barge right through with the raw iterator
	Sliced& addin(Sliced &other){
		if(_loff || _roff)
			return s_addin(other);

		RawIterator a = rawBegin();
		RawIterator c = rawEnd();
		RawIterator b = other.rawBegin();

		//for(; &(*a) != &(*c); ++a, ++b)
		for(; a != c; ++a, ++b)
			(*a) += (*b);

		return *this;
	}

	Sliced& smulin(Scalar &x){
		if(x == 1)
			return *this;

		if(_loff || _roff)
			return s_smulin(x);

		if(x == 0)
			return zero();

		//  x == 2
		//int j = 0;
		//for(RawIterator a = rawBegin(); j < rows()*cols() ; j+=_SIZE, ++a)
		for(RawIterator a = rawBegin(); a != rawEnd(); ++a)
			(*a)*=2;

		return *this;
	}

	/*
	Sliced& smul(Scalar &x){
		return Sliced(*this).copy(*this).smulin(x);
	}
	*/

	void setEntry(size_t i, size_t j, const Scalar &a_ij){
		SlicedWord e = static_cast<SlicedWord>(a_ij);
		//  determine location
		//  TODO:  THIS SEEMS TO EXCPET _rep isn't adjusted for submatrix
		//  whereas in dense-matrix.h, submatrix adjusts _rep.  need to study
		//  the pros/cons of either approach but CANNOT MIX THEM
		//  I think
		//size_t word = (_i+i)*_stride + ((j+(_j%_SIZE))/_SIZE);
		size_t word = i*_stride + ((j+(_j%_SIZE))/_SIZE);
		//int w = i*Matrix::coldim() + ((j+(_j%_SIZE))/_SIZE);
		//int w = ((j+(_j%_SIZE))/_SIZE);
		//RawIterator word = rowBegin(i) + w;
		//word += w;

		size_t index = (_j+j) % _SIZE;

		SlicedWord b1 = (e & 2) >> 1;
		SlicedWord b0 = (e & 1) | b1;
		SlicedWord one = 1;

		//(*word) &= ~(one << index);
		//(*word).b0 |= b0 << index;
		//(*word).b1 |= b1 << index;

		_rep[word] &= ~(one << index);

		_rep[word].b0 |= b0 << index;
		_rep[word].b1 |= b1 << index;
	}

	Scalar getEntry(size_t i, size_t j) {
		Scalar retVal;
		getEntry(retVal,i,j);
		return retVal;
	}

	Scalar& getEntry(Scalar &x, size_t i, size_t j){
		//int w = ((j+(_j%_SIZE))/_SIZE);
		//  TODO:  see note in setEntry
		size_t word = (_i+i)*_stride + ((j+(_j%_SIZE))/_SIZE);
		//RawIterator word = rowBegin(i) + w;
		//word += w;

		size_t index = (_j+j) % _SIZE;

		//cerr << "(w" << w << ",i" << index << ")";
		//std::cerr << (*word).b0 << "x" << (*word).b1 << std::endl;

		//int answer = (int)((((*word).b1 >> index) & 1) + (((*word).b0 >> index) & 1));
		size_t answer = (size_t)(((_rep[word].b1 >> index) & 1) +
				((_rep[word].b0 >> index) & 1));
		//_domain.init(x, answer);
		x = answer;
		return x;
	}

	//  begin, end, scalar, other begin
	Sliced & axpyin(RawIterator &b, RawIterator &e, Scalar &s, RawIterator &ob){
		RawIterator x = b;
		RawIterator y = ob;

		switch(static_cast<int>(s)){
			case 0:
				return *this;
			case 1:
				if(_loff || _roff)
					return s_axpyin(b, s, ob);
				for(; x!=e; ++x,++y)
					(*x) += (*y);
				return *this;
			case 2:
				if(_loff || _roff)
					return s_axpyin(b, s, ob);
				for(; x!=e; ++x,++y){
					(*x) += (*y)*2;
				}
				return *this;
		}
		return *this;
	}

	//  MUL:
	//  become the product of two sliced matrices
	//  (only seems to work if row packed so far)
	//  (does not check for compatible sizes)
	//  (does NOT work yet for two submatrices)
	template <class Gettable>
	Sliced & mul(Gettable& A, Sliced& B){
		zero();

		Scalar a_ij;
		//  c&b - begin and end
		RawIterator c_b, c_e, b_b; //, b_e;

		size_t count = 0;
		//  axpyin to C individual entries of A with rows of B
		for(; count < rowdim(); ++count){
			c_b = rowBegin(count);
			c_e = rowEnd(count);

			//Timer t;
			//t.clear(); t.start();
			for(size_t len = 0; len < A.coldim(); ++len){
				//  element of A goes down rows of A.
				//  (could improve on speed of method to get this value [step?])
				a_ij = A.getEntry(a_ij, count, len);

				//  this is axpy'd to THAT row of B.
				b_b = B.rowBegin(len);
				axpyin(c_b, c_e, a_ij, b_b);
			}
			//t.stop();  std::cerr << t << std::endl;
		}
		return *this;
	}

	std::ostream& write(std::ostream &os = std::cerr, size_t offset = 0){
		Scalar t;
		for(size_t i = 0; i<_m; i++){
			for(size_t q=0; q<offset; ++q)
				os << "  ";
			for(size_t j = 0; j<_n; j++){
				os << (size_t)getEntry(t, i, j);
				/*  DEBUG _SIZE-BIT BOUNDARIES
				if(offset && j && ! ((_j+j+1)%_SIZE)){
				if(j && ! ((_j+j+1)%_SIZE))
					os << "|";
				else
					os << " ";
				}
				else
				*/
					os << " ";
			}
			os << std::endl;
		}
		os << std::endl;
		return os;
	}

	//  returns an (approximately) random _SIZE-bit word
	SlicedWord randomLL(){
		SlicedWord swr = 0;
		for(size_t i=0; i<(_SIZE/8); ++i)
			swr |= ((SlicedWord)(rand()%256) << (i << 3));
		return swr;
	}

	//  completely randomizes sliced block entries
	Sliced& random(size_t seed = 0){
		if(seed) srand(seed);
		//srand(seed);

		RawIterator a = rawBegin();
		//  TODO:  problem here is that
		//  this will cause about 1/2 0's, 1/4 1's & 2's
		for(; a != rawEnd(); ++a){
			(*a).b0 = randomLL();
			(*a).b1 = randomLL() & (*a).b0;

			//std::cerr << (*a).b0 << "x" << (*a).b1 << std::endl;
		}
		return *this;
	}

	//  completely zeros out a sliced block
	Sliced& zero(){
		if(_sub && (_loff || _roff)){
			Scalar t;
			//  TODO (can do [[[slightly]]] better if we specialize for 0
			return s_smulin(_domain.init(t,0));
		}

		//  there has to be a way to use a
		//  low level mem* function to zero out a memory block
		RawIterator a = rawBegin();
		RawIterator b = rawEnd();
		for(;a != b; ++a)
			(*a).zero();

		return *this;
	}

	bool isEqual(Sliced &other){
        if (rows() != other.rows() || cols() != other.cols()) {
			//std::cout << "shape mismatch" << std::endl;
			return false;
		}
	//	if(_loff || _roff || other._loff || other._roff){
			//  very slow... could be improved if both mats are aligned
			Scalar x, y;
			for(size_t i = 0; i<rows(); ++i)
				for(size_t j = 0; j<cols(); ++j){
					//std::cerr << getEntry(x, i, j) << "vs" << other.getEntry(y, i, j) << std::endl;
					if(getEntry(x, i, j) != other.getEntry(y, i, j)) {
						//std::cout << "entry mismatch " << i << " " << j << std::endl;
						return false;
					}
				}
	/*  fails for very small (1 by 1) matrix.
		}
		else{
			//  otherwise just check _SIZE-bits at a time
			//  TODO could be faster w/ memcmp, but not applicable for breaks "aligned" submats
			for(RawIterator a = rawBegin(), b=other.rawBegin(); a != rawEnd(); ++a, ++b){
				//int count = 0;
				if((*a) != (*b)){
					//cerr << (*a).b0 << "ver" << (*b).b0 << endl;
					//cerr << (*a).b1 << "ver" << (*b).b1 << endl;
					return false;
				}
			}
		}
	*/
		return true;
	}

	bool isZero(){
		if(_loff || _roff){
			Scalar x;
			for(size_t i = 0; i<rows(); ++i)
				for(size_t j = 0; j<cols(); ++j)
					if(getEntry(x, i, j))
						return false;
		}
		else{
			//  otherwise just check _SIZE-bits at a time
			//  could prob be faster
			for(RawIterator a = rawBegin(); a != rawEnd(); ++a){
				if((*a).b0 || (*a).b1)
					return false;
			}
		}
		return true;
	}

	Sliced& deepcopy(Sliced &other){
		if(_sub) return s_copy(other);

		*this = other;
		return *this;
	}

	std::ostream& writeRep(std::ostream &os = std::cerr){
		for(RawIterator i=rawBegin(); i!=rawEnd(); ++i){
			os << "0th bits: " << (SlicedWord)(*i).b0 << " 1st bits: " << (SlicedWord)(*i).b1 << std::endl;
		}
		os << std::endl;
		return os;
	}

	size_t memSize(){
		size_t bytesPerRow = ((_n + _SIZE-1)/_SIZE) * 2 * sizeof(SlicedWord);
		return bytesPerRow  * _m;
	}

	std::ostream& writeBinary(std::ostream &os){
		if(_sub){ //std::cerr << "\n\nNear death!\n\n" << std::endl;
			return s_wb(os); } // TODO fix

		size_t bytes = memSize();
		//std::cerr << "WRITE " << bytes << " BYTES." << std::endl;
		os.write((char *)&(*_rep), bytes);

		return os;
	}

	//  assumes we're NOT a submatrix (read into contiguous block)
	std::istream& readBinary(std::istream& is){
		if(_sub){ //std::cerr << "\n\nDeath!\n\n" << std::endl;
			return s_rb(is); }
		size_t bytes = memSize();
		is.read((char *)&(*_rep), bytes);
		// std::cerr << "READ " << bytes << " BYTES." << std::endl;
		return is;
	}
	/*
	bool writeBinaryFile(const char *file){
		ofstream bin;
		bin.open(file, ios::out | ios::binary);
		if(!bin){ std::cerr << "failure opening " << file << std::endl; return false; }
		writeBinary(bin);
		bin.close();
		return true;
	}

	bool readBinaryFile(const char *file){
		ifstream in;
		in.open(file, ios::in | ios::binary);
		if(!in){ std::cerr << "failure opening " << file << std::endl; return false; }
		readBinary(in);
		in.close();
		return true;
	}

    void mmapFile(int fd){
		if(_alloc){
			std::cerr << "alloc'd matrix trying to mmap." << std::endl;
			close(fd);
			return;
		}
        size_t bytes = memSize();

        //_rep = (Sliced::SlicedUnit *)mmap(0, bytes, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
		//TODO MAP_HUGETLB
        _rep = (Sliced::SlicedUnit *)mmap(0, bytes, PROT_READ | PROT_WRITE, MAP_SHARED , fd, 0);
        if((void *)_rep == MAP_FAILED) {
            close(fd);
            perror("Error mapping the file.");
        }
    }

    void mmapBinaryFile(const char *file){
        int fd = open(file, O_RDWR);
        if(fd == -1) {
            perror("Error opening file to mmap.");
        }
		mmapFile(fd);
    }
	*/
    void munmapBinaryFile(){
        size_t bytes = memSize();
        munmap((void *)_rep, bytes);
    }

	_Domain& domain(){ return _domain; }

	size_t rows(){ return _m; }
	size_t cols(){ return _n; }
	size_t rowdim()const{ return _m; }
	size_t coldim()const{ return _n; }

	size_t l(){ return _loff; }
	size_t r(){ return _roff; }

	//  pointer/offset info for debugging
	void pinfo(){
		std::cerr << "Matrix @ ";
		RawIterator i = rawBegin();
		i.pinfo();
		std::cerr << "\t" << _m << " x " << _n << std::endl;
		std::cerr << "\tLO: " << _loff << " RO: " << _roff << std::endl;
		std::cerr << std::endl;
	}

	//  size info for debugging
	void sinfo(){
		std::cerr << "Matrix " << _m << " by " << _n << std::endl;
		std::cerr << "... " << _m * _n / 4 << " bytes." << std::endl;
	}

private:
	_Domain _domain;
	size_t _m, _n;
	bool _colPacked;
	//  SUBMATRIX
	size_t _i, _j;
	size_t _loff, _roff; //left & right offsets
	size_t _SIZE;
	bool _sub;
}; // Sliced

}

#endif // __DENSE_SLICED_H