This file is indexed.

/usr/include/lemon/dijkstra.h is in liblemon-dev 1.3.1+dfsg-1+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
/* -*- mode: C++; indent-tabs-mode: nil; -*-
 *
 * This file is a part of LEMON, a generic C++ optimization library.
 *
 * Copyright (C) 2003-2013
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
 *
 * Permission to use, modify and distribute this software is granted
 * provided that this copyright notice appears in all copies. For
 * precise terms see the accompanying LICENSE file.
 *
 * This software is provided "AS IS" with no warranty of any kind,
 * express or implied, and with no claim as to its suitability for any
 * purpose.
 *
 */

#ifndef LEMON_DIJKSTRA_H
#define LEMON_DIJKSTRA_H

///\ingroup shortest_path
///\file
///\brief Dijkstra algorithm.

#include <limits>
#include <lemon/list_graph.h>
#include <lemon/bin_heap.h>
#include <lemon/bits/path_dump.h>
#include <lemon/core.h>
#include <lemon/error.h>
#include <lemon/maps.h>
#include <lemon/path.h>

namespace lemon {

  /// \brief Default operation traits for the Dijkstra algorithm class.
  ///
  /// This operation traits class defines all computational operations and
  /// constants which are used in the Dijkstra algorithm.
  template <typename V>
  struct DijkstraDefaultOperationTraits {
    /// \e
    typedef V Value;
    /// \brief Gives back the zero value of the type.
    static Value zero() {
      return static_cast<Value>(0);
    }
    /// \brief Gives back the sum of the given two elements.
    static Value plus(const Value& left, const Value& right) {
      return left + right;
    }
    /// \brief Gives back true only if the first value is less than the second.
    static bool less(const Value& left, const Value& right) {
      return left < right;
    }
  };

  ///Default traits class of Dijkstra class.

  ///Default traits class of Dijkstra class.
  ///\tparam GR The type of the digraph.
  ///\tparam LEN The type of the length map.
  template<typename GR, typename LEN>
  struct DijkstraDefaultTraits
  {
    ///The type of the digraph the algorithm runs on.
    typedef GR Digraph;

    ///The type of the map that stores the arc lengths.

    ///The type of the map that stores the arc lengths.
    ///It must conform to the \ref concepts::ReadMap "ReadMap" concept.
    typedef LEN LengthMap;
    ///The type of the arc lengths.
    typedef typename LEN::Value Value;

    /// Operation traits for %Dijkstra algorithm.

    /// This class defines the operations that are used in the algorithm.
    /// \see DijkstraDefaultOperationTraits
    typedef DijkstraDefaultOperationTraits<Value> OperationTraits;

    /// The cross reference type used by the heap.

    /// The cross reference type used by the heap.
    /// Usually it is \c Digraph::NodeMap<int>.
    typedef typename Digraph::template NodeMap<int> HeapCrossRef;
    ///Instantiates a \c HeapCrossRef.

    ///This function instantiates a \ref HeapCrossRef.
    /// \param g is the digraph, to which we would like to define the
    /// \ref HeapCrossRef.
    static HeapCrossRef *createHeapCrossRef(const Digraph &g)
    {
      return new HeapCrossRef(g);
    }

    ///The heap type used by the %Dijkstra algorithm.

    ///The heap type used by the Dijkstra algorithm.
    ///
    ///\sa BinHeap
    ///\sa Dijkstra
    typedef BinHeap<typename LEN::Value, HeapCrossRef, std::less<Value> > Heap;
    ///Instantiates a \c Heap.

    ///This function instantiates a \ref Heap.
    static Heap *createHeap(HeapCrossRef& r)
    {
      return new Heap(r);
    }

    ///\brief The type of the map that stores the predecessor
    ///arcs of the shortest paths.
    ///
    ///The type of the map that stores the predecessor
    ///arcs of the shortest paths.
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
    ///Instantiates a \c PredMap.

    ///This function instantiates a \ref PredMap.
    ///\param g is the digraph, to which we would like to define the
    ///\ref PredMap.
    static PredMap *createPredMap(const Digraph &g)
    {
      return new PredMap(g);
    }

    ///The type of the map that indicates which nodes are processed.

    ///The type of the map that indicates which nodes are processed.
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    ///By default, it is a NullMap.
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
    ///Instantiates a \c ProcessedMap.

    ///This function instantiates a \ref ProcessedMap.
    ///\param g is the digraph, to which
    ///we would like to define the \ref ProcessedMap.
#ifdef DOXYGEN
    static ProcessedMap *createProcessedMap(const Digraph &g)
#else
    static ProcessedMap *createProcessedMap(const Digraph &)
#endif
    {
      return new ProcessedMap();
    }

    ///The type of the map that stores the distances of the nodes.

    ///The type of the map that stores the distances of the nodes.
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap;
    ///Instantiates a \c DistMap.

    ///This function instantiates a \ref DistMap.
    ///\param g is the digraph, to which we would like to define
    ///the \ref DistMap.
    static DistMap *createDistMap(const Digraph &g)
    {
      return new DistMap(g);
    }
  };

  ///%Dijkstra algorithm class.

  /// \ingroup shortest_path
  ///This class provides an efficient implementation of the %Dijkstra algorithm.
  ///
  ///The %Dijkstra algorithm solves the single-source shortest path problem
  ///when all arc lengths are non-negative. If there are negative lengths,
  ///the BellmanFord algorithm should be used instead.
  ///
  ///The arc lengths are passed to the algorithm using a
  ///\ref concepts::ReadMap "ReadMap",
  ///so it is easy to change it to any kind of length.
  ///The type of the length is determined by the
  ///\ref concepts::ReadMap::Value "Value" of the length map.
  ///It is also possible to change the underlying priority heap.
  ///
  ///There is also a \ref dijkstra() "function-type interface" for the
  ///%Dijkstra algorithm, which is convenient in the simplier cases and
  ///it can be used easier.
  ///
  ///\tparam GR The type of the digraph the algorithm runs on.
  ///The default type is \ref ListDigraph.
  ///\tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies
  ///the lengths of the arcs.
  ///It is read once for each arc, so the map may involve in
  ///relatively time consuming process to compute the arc lengths if
  ///it is necessary. The default map type is \ref
  ///concepts::Digraph::ArcMap "GR::ArcMap<int>".
  ///\tparam TR The traits class that defines various types used by the
  ///algorithm. By default, it is \ref DijkstraDefaultTraits
  ///"DijkstraDefaultTraits<GR, LEN>".
  ///In most cases, this parameter should not be set directly,
  ///consider to use the named template parameters instead.
#ifdef DOXYGEN
  template <typename GR, typename LEN, typename TR>
#else
  template <typename GR=ListDigraph,
            typename LEN=typename GR::template ArcMap<int>,
            typename TR=DijkstraDefaultTraits<GR,LEN> >
#endif
  class Dijkstra {
  public:

    ///The type of the digraph the algorithm runs on.
    typedef typename TR::Digraph Digraph;

    ///The type of the arc lengths.
    typedef typename TR::Value Value;
    ///The type of the map that stores the arc lengths.
    typedef typename TR::LengthMap LengthMap;
    ///\brief The type of the map that stores the predecessor arcs of the
    ///shortest paths.
    typedef typename TR::PredMap PredMap;
    ///The type of the map that stores the distances of the nodes.
    typedef typename TR::DistMap DistMap;
    ///The type of the map that indicates which nodes are processed.
    typedef typename TR::ProcessedMap ProcessedMap;
    ///The type of the paths.
    typedef PredMapPath<Digraph, PredMap> Path;
    ///The cross reference type used for the current heap.
    typedef typename TR::HeapCrossRef HeapCrossRef;
    ///The heap type used by the algorithm.
    typedef typename TR::Heap Heap;
    /// \brief The \ref lemon::DijkstraDefaultOperationTraits
    /// "operation traits class" of the algorithm.
    typedef typename TR::OperationTraits OperationTraits;

    ///The \ref lemon::DijkstraDefaultTraits "traits class" of the algorithm.
    typedef TR Traits;

  private:

    typedef typename Digraph::Node Node;
    typedef typename Digraph::NodeIt NodeIt;
    typedef typename Digraph::Arc Arc;
    typedef typename Digraph::OutArcIt OutArcIt;

    //Pointer to the underlying digraph.
    const Digraph *G;
    //Pointer to the length map.
    const LengthMap *_length;
    //Pointer to the map of predecessors arcs.
    PredMap *_pred;
    //Indicates if _pred is locally allocated (true) or not.
    bool local_pred;
    //Pointer to the map of distances.
    DistMap *_dist;
    //Indicates if _dist is locally allocated (true) or not.
    bool local_dist;
    //Pointer to the map of processed status of the nodes.
    ProcessedMap *_processed;
    //Indicates if _processed is locally allocated (true) or not.
    bool local_processed;
    //Pointer to the heap cross references.
    HeapCrossRef *_heap_cross_ref;
    //Indicates if _heap_cross_ref is locally allocated (true) or not.
    bool local_heap_cross_ref;
    //Pointer to the heap.
    Heap *_heap;
    //Indicates if _heap is locally allocated (true) or not.
    bool local_heap;

    //Creates the maps if necessary.
    void create_maps()
    {
      if(!_pred) {
        local_pred = true;
        _pred = Traits::createPredMap(*G);
      }
      if(!_dist) {
        local_dist = true;
        _dist = Traits::createDistMap(*G);
      }
      if(!_processed) {
        local_processed = true;
        _processed = Traits::createProcessedMap(*G);
      }
      if (!_heap_cross_ref) {
        local_heap_cross_ref = true;
        _heap_cross_ref = Traits::createHeapCrossRef(*G);
      }
      if (!_heap) {
        local_heap = true;
        _heap = Traits::createHeap(*_heap_cross_ref);
      }
    }

  public:

    typedef Dijkstra Create;

    ///\name Named Template Parameters

    ///@{

    template <class T>
    struct SetPredMapTraits : public Traits {
      typedef T PredMap;
      static PredMap *createPredMap(const Digraph &)
      {
        LEMON_ASSERT(false, "PredMap is not initialized");
        return 0; // ignore warnings
      }
    };
    ///\brief \ref named-templ-param "Named parameter" for setting
    ///\c PredMap type.
    ///
    ///\ref named-templ-param "Named parameter" for setting
    ///\c PredMap type.
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    template <class T>
    struct SetPredMap
      : public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > {
      typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create;
    };

    template <class T>
    struct SetDistMapTraits : public Traits {
      typedef T DistMap;
      static DistMap *createDistMap(const Digraph &)
      {
        LEMON_ASSERT(false, "DistMap is not initialized");
        return 0; // ignore warnings
      }
    };
    ///\brief \ref named-templ-param "Named parameter" for setting
    ///\c DistMap type.
    ///
    ///\ref named-templ-param "Named parameter" for setting
    ///\c DistMap type.
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    template <class T>
    struct SetDistMap
      : public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > {
      typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create;
    };

    template <class T>
    struct SetProcessedMapTraits : public Traits {
      typedef T ProcessedMap;
      static ProcessedMap *createProcessedMap(const Digraph &)
      {
        LEMON_ASSERT(false, "ProcessedMap is not initialized");
        return 0; // ignore warnings
      }
    };
    ///\brief \ref named-templ-param "Named parameter" for setting
    ///\c ProcessedMap type.
    ///
    ///\ref named-templ-param "Named parameter" for setting
    ///\c ProcessedMap type.
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    template <class T>
    struct SetProcessedMap
      : public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > {
      typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create;
    };

    struct SetStandardProcessedMapTraits : public Traits {
      typedef typename Digraph::template NodeMap<bool> ProcessedMap;
      static ProcessedMap *createProcessedMap(const Digraph &g)
      {
        return new ProcessedMap(g);
      }
    };
    ///\brief \ref named-templ-param "Named parameter" for setting
    ///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
    ///
    ///\ref named-templ-param "Named parameter" for setting
    ///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
    ///If you don't set it explicitly, it will be automatically allocated.
    struct SetStandardProcessedMap
      : public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > {
      typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits >
      Create;
    };

    template <class H, class CR>
    struct SetHeapTraits : public Traits {
      typedef CR HeapCrossRef;
      typedef H Heap;
      static HeapCrossRef *createHeapCrossRef(const Digraph &) {
        LEMON_ASSERT(false, "HeapCrossRef is not initialized");
        return 0; // ignore warnings
      }
      static Heap *createHeap(HeapCrossRef &)
      {
        LEMON_ASSERT(false, "Heap is not initialized");
        return 0; // ignore warnings
      }
    };
    ///\brief \ref named-templ-param "Named parameter" for setting
    ///heap and cross reference types
    ///
    ///\ref named-templ-param "Named parameter" for setting heap and cross
    ///reference types. If this named parameter is used, then external
    ///heap and cross reference objects must be passed to the algorithm
    ///using the \ref heap() function before calling \ref run(Node) "run()"
    ///or \ref init().
    ///\sa SetStandardHeap
    template <class H, class CR = typename Digraph::template NodeMap<int> >
    struct SetHeap
      : public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > {
      typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create;
    };

    template <class H, class CR>
    struct SetStandardHeapTraits : public Traits {
      typedef CR HeapCrossRef;
      typedef H Heap;
      static HeapCrossRef *createHeapCrossRef(const Digraph &G) {
        return new HeapCrossRef(G);
      }
      static Heap *createHeap(HeapCrossRef &R)
      {
        return new Heap(R);
      }
    };
    ///\brief \ref named-templ-param "Named parameter" for setting
    ///heap and cross reference types with automatic allocation
    ///
    ///\ref named-templ-param "Named parameter" for setting heap and cross
    ///reference types with automatic allocation.
    ///They should have standard constructor interfaces to be able to
    ///automatically created by the algorithm (i.e. the digraph should be
    ///passed to the constructor of the cross reference and the cross
    ///reference should be passed to the constructor of the heap).
    ///However, external heap and cross reference objects could also be
    ///passed to the algorithm using the \ref heap() function before
    ///calling \ref run(Node) "run()" or \ref init().
    ///\sa SetHeap
    template <class H, class CR = typename Digraph::template NodeMap<int> >
    struct SetStandardHeap
      : public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > {
      typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> >
      Create;
    };

    template <class T>
    struct SetOperationTraitsTraits : public Traits {
      typedef T OperationTraits;
    };

    /// \brief \ref named-templ-param "Named parameter" for setting
    ///\c OperationTraits type
    ///
    ///\ref named-templ-param "Named parameter" for setting
    ///\c OperationTraits type.
    /// For more information, see \ref DijkstraDefaultOperationTraits.
    template <class T>
    struct SetOperationTraits
      : public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > {
      typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> >
      Create;
    };

    ///@}

  protected:

    Dijkstra() {}

  public:

    ///Constructor.

    ///Constructor.
    ///\param g The digraph the algorithm runs on.
    ///\param length The length map used by the algorithm.
    Dijkstra(const Digraph& g, const LengthMap& length) :
      G(&g), _length(&length),
      _pred(NULL), local_pred(false),
      _dist(NULL), local_dist(false),
      _processed(NULL), local_processed(false),
      _heap_cross_ref(NULL), local_heap_cross_ref(false),
      _heap(NULL), local_heap(false)
    { }

    ///Destructor.
    ~Dijkstra()
    {
      if(local_pred) delete _pred;
      if(local_dist) delete _dist;
      if(local_processed) delete _processed;
      if(local_heap_cross_ref) delete _heap_cross_ref;
      if(local_heap) delete _heap;
    }

    ///Sets the length map.

    ///Sets the length map.
    ///\return <tt> (*this) </tt>
    Dijkstra &lengthMap(const LengthMap &m)
    {
      _length = &m;
      return *this;
    }

    ///Sets the map that stores the predecessor arcs.

    ///Sets the map that stores the predecessor arcs.
    ///If you don't use this function before calling \ref run(Node) "run()"
    ///or \ref init(), an instance will be allocated automatically.
    ///The destructor deallocates this automatically allocated map,
    ///of course.
    ///\return <tt> (*this) </tt>
    Dijkstra &predMap(PredMap &m)
    {
      if(local_pred) {
        delete _pred;
        local_pred=false;
      }
      _pred = &m;
      return *this;
    }

    ///Sets the map that indicates which nodes are processed.

    ///Sets the map that indicates which nodes are processed.
    ///If you don't use this function before calling \ref run(Node) "run()"
    ///or \ref init(), an instance will be allocated automatically.
    ///The destructor deallocates this automatically allocated map,
    ///of course.
    ///\return <tt> (*this) </tt>
    Dijkstra &processedMap(ProcessedMap &m)
    {
      if(local_processed) {
        delete _processed;
        local_processed=false;
      }
      _processed = &m;
      return *this;
    }

    ///Sets the map that stores the distances of the nodes.

    ///Sets the map that stores the distances of the nodes calculated by the
    ///algorithm.
    ///If you don't use this function before calling \ref run(Node) "run()"
    ///or \ref init(), an instance will be allocated automatically.
    ///The destructor deallocates this automatically allocated map,
    ///of course.
    ///\return <tt> (*this) </tt>
    Dijkstra &distMap(DistMap &m)
    {
      if(local_dist) {
        delete _dist;
        local_dist=false;
      }
      _dist = &m;
      return *this;
    }

    ///Sets the heap and the cross reference used by algorithm.

    ///Sets the heap and the cross reference used by algorithm.
    ///If you don't use this function before calling \ref run(Node) "run()"
    ///or \ref init(), heap and cross reference instances will be
    ///allocated automatically.
    ///The destructor deallocates these automatically allocated objects,
    ///of course.
    ///\return <tt> (*this) </tt>
    Dijkstra &heap(Heap& hp, HeapCrossRef &cr)
    {
      if(local_heap_cross_ref) {
        delete _heap_cross_ref;
        local_heap_cross_ref=false;
      }
      _heap_cross_ref = &cr;
      if(local_heap) {
        delete _heap;
        local_heap=false;
      }
      _heap = &hp;
      return *this;
    }

  private:

    void finalizeNodeData(Node v,Value dst)
    {
      _processed->set(v,true);
      _dist->set(v, dst);
    }

  public:

    ///\name Execution Control
    ///The simplest way to execute the %Dijkstra algorithm is to use
    ///one of the member functions called \ref run(Node) "run()".\n
    ///If you need better control on the execution, you have to call
    ///\ref init() first, then you can add several source nodes with
    ///\ref addSource(). Finally the actual path computation can be
    ///performed with one of the \ref start() functions.

    ///@{

    ///\brief Initializes the internal data structures.
    ///
    ///Initializes the internal data structures.
    void init()
    {
      create_maps();
      _heap->clear();
      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
        _pred->set(u,INVALID);
        _processed->set(u,false);
        _heap_cross_ref->set(u,Heap::PRE_HEAP);
      }
    }

    ///Adds a new source node.

    ///Adds a new source node to the priority heap.
    ///The optional second parameter is the initial distance of the node.
    ///
    ///The function checks if the node has already been added to the heap and
    ///it is pushed to the heap only if either it was not in the heap
    ///or the shortest path found till then is shorter than \c dst.
    void addSource(Node s,Value dst=OperationTraits::zero())
    {
      if(_heap->state(s) != Heap::IN_HEAP) {
        _heap->push(s,dst);
      } else if(OperationTraits::less((*_heap)[s], dst)) {
        _heap->set(s,dst);
        _pred->set(s,INVALID);
      }
    }

    ///Processes the next node in the priority heap

    ///Processes the next node in the priority heap.
    ///
    ///\return The processed node.
    ///
    ///\warning The priority heap must not be empty.
    Node processNextNode()
    {
      Node v=_heap->top();
      Value oldvalue=_heap->prio();
      _heap->pop();
      finalizeNodeData(v,oldvalue);

      for(OutArcIt e(*G,v); e!=INVALID; ++e) {
        Node w=G->target(e);
        switch(_heap->state(w)) {
        case Heap::PRE_HEAP:
          _heap->push(w,OperationTraits::plus(oldvalue, (*_length)[e]));
          _pred->set(w,e);
          break;
        case Heap::IN_HEAP:
          {
            Value newvalue = OperationTraits::plus(oldvalue, (*_length)[e]);
            if ( OperationTraits::less(newvalue, (*_heap)[w]) ) {
              _heap->decrease(w, newvalue);
              _pred->set(w,e);
            }
          }
          break;
        case Heap::POST_HEAP:
          break;
        }
      }
      return v;
    }

    ///The next node to be processed.

    ///Returns the next node to be processed or \c INVALID if the
    ///priority heap is empty.
    Node nextNode() const
    {
      return !_heap->empty()?_heap->top():INVALID;
    }

    ///Returns \c false if there are nodes to be processed.

    ///Returns \c false if there are nodes to be processed
    ///in the priority heap.
    bool emptyQueue() const { return _heap->empty(); }

    ///Returns the number of the nodes to be processed.

    ///Returns the number of the nodes to be processed
    ///in the priority heap.
    int queueSize() const { return _heap->size(); }

    ///Executes the algorithm.

    ///Executes the algorithm.
    ///
    ///This method runs the %Dijkstra algorithm from the root node(s)
    ///in order to compute the shortest path to each node.
    ///
    ///The algorithm computes
    ///- the shortest path tree (forest),
    ///- the distance of each node from the root(s).
    ///
    ///\pre init() must be called and at least one root node should be
    ///added with addSource() before using this function.
    ///
    ///\note <tt>d.start()</tt> is just a shortcut of the following code.
    ///\code
    ///  while ( !d.emptyQueue() ) {
    ///    d.processNextNode();
    ///  }
    ///\endcode
    void start()
    {
      while ( !emptyQueue() ) processNextNode();
    }

    ///Executes the algorithm until the given target node is processed.

    ///Executes the algorithm until the given target node is processed.
    ///
    ///This method runs the %Dijkstra algorithm from the root node(s)
    ///in order to compute the shortest path to \c t.
    ///
    ///The algorithm computes
    ///- the shortest path to \c t,
    ///- the distance of \c t from the root(s).
    ///
    ///\pre init() must be called and at least one root node should be
    ///added with addSource() before using this function.
    void start(Node t)
    {
      while ( !_heap->empty() && _heap->top()!=t ) processNextNode();
      if ( !_heap->empty() ) {
        finalizeNodeData(_heap->top(),_heap->prio());
        _heap->pop();
      }
    }

    ///Executes the algorithm until a condition is met.

    ///Executes the algorithm until a condition is met.
    ///
    ///This method runs the %Dijkstra algorithm from the root node(s) in
    ///order to compute the shortest path to a node \c v with
    /// <tt>nm[v]</tt> true, if such a node can be found.
    ///
    ///\param nm A \c bool (or convertible) node map. The algorithm
    ///will stop when it reaches a node \c v with <tt>nm[v]</tt> true.
    ///
    ///\return The reached node \c v with <tt>nm[v]</tt> true or
    ///\c INVALID if no such node was found.
    ///
    ///\pre init() must be called and at least one root node should be
    ///added with addSource() before using this function.
    template<class NodeBoolMap>
    Node start(const NodeBoolMap &nm)
    {
      while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode();
      if ( _heap->empty() ) return INVALID;
      finalizeNodeData(_heap->top(),_heap->prio());
      return _heap->top();
    }

    ///Runs the algorithm from the given source node.

    ///This method runs the %Dijkstra algorithm from node \c s
    ///in order to compute the shortest path to each node.
    ///
    ///The algorithm computes
    ///- the shortest path tree,
    ///- the distance of each node from the root.
    ///
    ///\note <tt>d.run(s)</tt> is just a shortcut of the following code.
    ///\code
    ///  d.init();
    ///  d.addSource(s);
    ///  d.start();
    ///\endcode
    void run(Node s) {
      init();
      addSource(s);
      start();
    }

    ///Finds the shortest path between \c s and \c t.

    ///This method runs the %Dijkstra algorithm from node \c s
    ///in order to compute the shortest path to node \c t
    ///(it stops searching when \c t is processed).
    ///
    ///\return \c true if \c t is reachable form \c s.
    ///
    ///\note Apart from the return value, <tt>d.run(s,t)</tt> is just a
    ///shortcut of the following code.
    ///\code
    ///  d.init();
    ///  d.addSource(s);
    ///  d.start(t);
    ///\endcode
    bool run(Node s,Node t) {
      init();
      addSource(s);
      start(t);
      return (*_heap_cross_ref)[t] == Heap::POST_HEAP;
    }

    ///@}

    ///\name Query Functions
    ///The results of the %Dijkstra algorithm can be obtained using these
    ///functions.\n
    ///Either \ref run(Node) "run()" or \ref init() should be called
    ///before using them.

    ///@{

    ///The shortest path to the given node.

    ///Returns the shortest path to the given node from the root(s).
    ///
    ///\warning \c t should be reached from the root(s).
    ///
    ///\pre Either \ref run(Node) "run()" or \ref init()
    ///must be called before using this function.
    Path path(Node t) const { return Path(*G, *_pred, t); }

    ///The distance of the given node from the root(s).

    ///Returns the distance of the given node from the root(s).
    ///
    ///\warning If node \c v is not reached from the root(s), then
    ///the return value of this function is undefined.
    ///
    ///\pre Either \ref run(Node) "run()" or \ref init()
    ///must be called before using this function.
    Value dist(Node v) const { return (*_dist)[v]; }

    ///\brief Returns the 'previous arc' of the shortest path tree for
    ///the given node.
    ///
    ///This function returns the 'previous arc' of the shortest path
    ///tree for the node \c v, i.e. it returns the last arc of a
    ///shortest path from a root to \c v. It is \c INVALID if \c v
    ///is not reached from the root(s) or if \c v is a root.
    ///
    ///The shortest path tree used here is equal to the shortest path
    ///tree used in \ref predNode() and \ref predMap().
    ///
    ///\pre Either \ref run(Node) "run()" or \ref init()
    ///must be called before using this function.
    Arc predArc(Node v) const { return (*_pred)[v]; }

    ///\brief Returns the 'previous node' of the shortest path tree for
    ///the given node.
    ///
    ///This function returns the 'previous node' of the shortest path
    ///tree for the node \c v, i.e. it returns the last but one node
    ///of a shortest path from a root to \c v. It is \c INVALID
    ///if \c v is not reached from the root(s) or if \c v is a root.
    ///
    ///The shortest path tree used here is equal to the shortest path
    ///tree used in \ref predArc() and \ref predMap().
    ///
    ///\pre Either \ref run(Node) "run()" or \ref init()
    ///must be called before using this function.
    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
                                  G->source((*_pred)[v]); }

    ///\brief Returns a const reference to the node map that stores the
    ///distances of the nodes.
    ///
    ///Returns a const reference to the node map that stores the distances
    ///of the nodes calculated by the algorithm.
    ///
    ///\pre Either \ref run(Node) "run()" or \ref init()
    ///must be called before using this function.
    const DistMap &distMap() const { return *_dist;}

    ///\brief Returns a const reference to the node map that stores the
    ///predecessor arcs.
    ///
    ///Returns a const reference to the node map that stores the predecessor
    ///arcs, which form the shortest path tree (forest).
    ///
    ///\pre Either \ref run(Node) "run()" or \ref init()
    ///must be called before using this function.
    const PredMap &predMap() const { return *_pred;}

    ///Checks if the given node is reached from the root(s).

    ///Returns \c true if \c v is reached from the root(s).
    ///
    ///\pre Either \ref run(Node) "run()" or \ref init()
    ///must be called before using this function.
    bool reached(Node v) const { return (*_heap_cross_ref)[v] !=
                                        Heap::PRE_HEAP; }

    ///Checks if a node is processed.

    ///Returns \c true if \c v is processed, i.e. the shortest
    ///path to \c v has already found.
    ///
    ///\pre Either \ref run(Node) "run()" or \ref init()
    ///must be called before using this function.
    bool processed(Node v) const { return (*_heap_cross_ref)[v] ==
                                          Heap::POST_HEAP; }

    ///The current distance of the given node from the root(s).

    ///Returns the current distance of the given node from the root(s).
    ///It may be decreased in the following processes.
    ///
    ///\pre Either \ref run(Node) "run()" or \ref init()
    ///must be called before using this function and
    ///node \c v must be reached but not necessarily processed.
    Value currentDist(Node v) const {
      return processed(v) ? (*_dist)[v] : (*_heap)[v];
    }

    ///@}
  };


  ///Default traits class of dijkstra() function.

  ///Default traits class of dijkstra() function.
  ///\tparam GR The type of the digraph.
  ///\tparam LEN The type of the length map.
  template<class GR, class LEN>
  struct DijkstraWizardDefaultTraits
  {
    ///The type of the digraph the algorithm runs on.
    typedef GR Digraph;
    ///The type of the map that stores the arc lengths.

    ///The type of the map that stores the arc lengths.
    ///It must conform to the \ref concepts::ReadMap "ReadMap" concept.
    typedef LEN LengthMap;
    ///The type of the arc lengths.
    typedef typename LEN::Value Value;

    /// Operation traits for Dijkstra algorithm.

    /// This class defines the operations that are used in the algorithm.
    /// \see DijkstraDefaultOperationTraits
    typedef DijkstraDefaultOperationTraits<Value> OperationTraits;

    /// The cross reference type used by the heap.

    /// The cross reference type used by the heap.
    /// Usually it is \c Digraph::NodeMap<int>.
    typedef typename Digraph::template NodeMap<int> HeapCrossRef;
    ///Instantiates a \ref HeapCrossRef.

    ///This function instantiates a \ref HeapCrossRef.
    /// \param g is the digraph, to which we would like to define the
    /// HeapCrossRef.
    static HeapCrossRef *createHeapCrossRef(const Digraph &g)
    {
      return new HeapCrossRef(g);
    }

    ///The heap type used by the Dijkstra algorithm.

    ///The heap type used by the Dijkstra algorithm.
    ///
    ///\sa BinHeap
    ///\sa Dijkstra
    typedef BinHeap<Value, typename Digraph::template NodeMap<int>,
                    std::less<Value> > Heap;

    ///Instantiates a \ref Heap.

    ///This function instantiates a \ref Heap.
    /// \param r is the HeapCrossRef which is used.
    static Heap *createHeap(HeapCrossRef& r)
    {
      return new Heap(r);
    }

    ///\brief The type of the map that stores the predecessor
    ///arcs of the shortest paths.
    ///
    ///The type of the map that stores the predecessor
    ///arcs of the shortest paths.
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
    ///Instantiates a PredMap.

    ///This function instantiates a PredMap.
    ///\param g is the digraph, to which we would like to define the
    ///PredMap.
    static PredMap *createPredMap(const Digraph &g)
    {
      return new PredMap(g);
    }

    ///The type of the map that indicates which nodes are processed.

    ///The type of the map that indicates which nodes are processed.
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    ///By default, it is a NullMap.
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
    ///Instantiates a ProcessedMap.

    ///This function instantiates a ProcessedMap.
    ///\param g is the digraph, to which
    ///we would like to define the ProcessedMap.
#ifdef DOXYGEN
    static ProcessedMap *createProcessedMap(const Digraph &g)
#else
    static ProcessedMap *createProcessedMap(const Digraph &)
#endif
    {
      return new ProcessedMap();
    }

    ///The type of the map that stores the distances of the nodes.

    ///The type of the map that stores the distances of the nodes.
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
    typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap;
    ///Instantiates a DistMap.

    ///This function instantiates a DistMap.
    ///\param g is the digraph, to which we would like to define
    ///the DistMap
    static DistMap *createDistMap(const Digraph &g)
    {
      return new DistMap(g);
    }

    ///The type of the shortest paths.

    ///The type of the shortest paths.
    ///It must conform to the \ref concepts::Path "Path" concept.
    typedef lemon::Path<Digraph> Path;
  };

  /// Default traits class used by DijkstraWizard

  /// Default traits class used by DijkstraWizard.
  /// \tparam GR The type of the digraph.
  /// \tparam LEN The type of the length map.
  template<typename GR, typename LEN>
  class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LEN>
  {
    typedef DijkstraWizardDefaultTraits<GR,LEN> Base;
  protected:
    //The type of the nodes in the digraph.
    typedef typename Base::Digraph::Node Node;

    //Pointer to the digraph the algorithm runs on.
    void *_g;
    //Pointer to the length map.
    void *_length;
    //Pointer to the map of processed nodes.
    void *_processed;
    //Pointer to the map of predecessors arcs.
    void *_pred;
    //Pointer to the map of distances.
    void *_dist;
    //Pointer to the shortest path to the target node.
    void *_path;
    //Pointer to the distance of the target node.
    void *_di;

  public:
    /// Constructor.

    /// This constructor does not require parameters, therefore it initiates
    /// all of the attributes to \c 0.
    DijkstraWizardBase() : _g(0), _length(0), _processed(0), _pred(0),
                           _dist(0), _path(0), _di(0) {}

    /// Constructor.

    /// This constructor requires two parameters,
    /// others are initiated to \c 0.
    /// \param g The digraph the algorithm runs on.
    /// \param l The length map.
    DijkstraWizardBase(const GR &g,const LEN &l) :
      _g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
      _length(reinterpret_cast<void*>(const_cast<LEN*>(&l))),
      _processed(0), _pred(0), _dist(0), _path(0), _di(0) {}

  };

  /// Auxiliary class for the function-type interface of Dijkstra algorithm.

  /// This auxiliary class is created to implement the
  /// \ref dijkstra() "function-type interface" of \ref Dijkstra algorithm.
  /// It does not have own \ref run(Node) "run()" method, it uses the
  /// functions and features of the plain \ref Dijkstra.
  ///
  /// This class should only be used through the \ref dijkstra() function,
  /// which makes it easier to use the algorithm.
  ///
  /// \tparam TR The traits class that defines various types used by the
  /// algorithm.
  template<class TR>
  class DijkstraWizard : public TR
  {
    typedef TR Base;

    typedef typename TR::Digraph Digraph;

    typedef typename Digraph::Node Node;
    typedef typename Digraph::NodeIt NodeIt;
    typedef typename Digraph::Arc Arc;
    typedef typename Digraph::OutArcIt OutArcIt;

    typedef typename TR::LengthMap LengthMap;
    typedef typename LengthMap::Value Value;
    typedef typename TR::PredMap PredMap;
    typedef typename TR::DistMap DistMap;
    typedef typename TR::ProcessedMap ProcessedMap;
    typedef typename TR::Path Path;
    typedef typename TR::Heap Heap;

  public:

    /// Constructor.
    DijkstraWizard() : TR() {}

    /// Constructor that requires parameters.

    /// Constructor that requires parameters.
    /// These parameters will be the default values for the traits class.
    /// \param g The digraph the algorithm runs on.
    /// \param l The length map.
    DijkstraWizard(const Digraph &g, const LengthMap &l) :
      TR(g,l) {}

    ///Copy constructor
    DijkstraWizard(const TR &b) : TR(b) {}

    ~DijkstraWizard() {}

    ///Runs Dijkstra algorithm from the given source node.

    ///This method runs %Dijkstra algorithm from the given source node
    ///in order to compute the shortest path to each node.
    void run(Node s)
    {
      Dijkstra<Digraph,LengthMap,TR>
        dijk(*reinterpret_cast<const Digraph*>(Base::_g),
             *reinterpret_cast<const LengthMap*>(Base::_length));
      if (Base::_pred)
        dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
      if (Base::_dist)
        dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
      if (Base::_processed)
        dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
      dijk.run(s);
    }

    ///Finds the shortest path between \c s and \c t.

    ///This method runs the %Dijkstra algorithm from node \c s
    ///in order to compute the shortest path to node \c t
    ///(it stops searching when \c t is processed).
    ///
    ///\return \c true if \c t is reachable form \c s.
    bool run(Node s, Node t)
    {
      Dijkstra<Digraph,LengthMap,TR>
        dijk(*reinterpret_cast<const Digraph*>(Base::_g),
             *reinterpret_cast<const LengthMap*>(Base::_length));
      if (Base::_pred)
        dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
      if (Base::_dist)
        dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
      if (Base::_processed)
        dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
      dijk.run(s,t);
      if (Base::_path)
        *reinterpret_cast<Path*>(Base::_path) = dijk.path(t);
      if (Base::_di)
        *reinterpret_cast<Value*>(Base::_di) = dijk.dist(t);
      return dijk.reached(t);
    }

    template<class T>
    struct SetPredMapBase : public Base {
      typedef T PredMap;
      static PredMap *createPredMap(const Digraph &) { return 0; };
      SetPredMapBase(const TR &b) : TR(b) {}
    };

    ///\brief \ref named-templ-param "Named parameter" for setting
    ///the predecessor map.
    ///
    ///\ref named-templ-param "Named parameter" function for setting
    ///the map that stores the predecessor arcs of the nodes.
    template<class T>
    DijkstraWizard<SetPredMapBase<T> > predMap(const T &t)
    {
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
      return DijkstraWizard<SetPredMapBase<T> >(*this);
    }

    template<class T>
    struct SetDistMapBase : public Base {
      typedef T DistMap;
      static DistMap *createDistMap(const Digraph &) { return 0; };
      SetDistMapBase(const TR &b) : TR(b) {}
    };

    ///\brief \ref named-templ-param "Named parameter" for setting
    ///the distance map.
    ///
    ///\ref named-templ-param "Named parameter" function for setting
    ///the map that stores the distances of the nodes calculated
    ///by the algorithm.
    template<class T>
    DijkstraWizard<SetDistMapBase<T> > distMap(const T &t)
    {
      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
      return DijkstraWizard<SetDistMapBase<T> >(*this);
    }

    template<class T>
    struct SetProcessedMapBase : public Base {
      typedef T ProcessedMap;
      static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
      SetProcessedMapBase(const TR &b) : TR(b) {}
    };

    ///\brief \ref named-func-param "Named parameter" for setting
    ///the processed map.
    ///
    ///\ref named-templ-param "Named parameter" function for setting
    ///the map that indicates which nodes are processed.
    template<class T>
    DijkstraWizard<SetProcessedMapBase<T> > processedMap(const T &t)
    {
      Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
      return DijkstraWizard<SetProcessedMapBase<T> >(*this);
    }

    template<class T>
    struct SetPathBase : public Base {
      typedef T Path;
      SetPathBase(const TR &b) : TR(b) {}
    };

    ///\brief \ref named-func-param "Named parameter"
    ///for getting the shortest path to the target node.
    ///
    ///\ref named-func-param "Named parameter"
    ///for getting the shortest path to the target node.
    template<class T>
    DijkstraWizard<SetPathBase<T> > path(const T &t)
    {
      Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
      return DijkstraWizard<SetPathBase<T> >(*this);
    }

    ///\brief \ref named-func-param "Named parameter"
    ///for getting the distance of the target node.
    ///
    ///\ref named-func-param "Named parameter"
    ///for getting the distance of the target node.
    DijkstraWizard dist(const Value &d)
    {
      Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d));
      return *this;
    }

  };

  ///Function-type interface for Dijkstra algorithm.

  /// \ingroup shortest_path
  ///Function-type interface for Dijkstra algorithm.
  ///
  ///This function also has several \ref named-func-param "named parameters",
  ///they are declared as the members of class \ref DijkstraWizard.
  ///The following examples show how to use these parameters.
  ///\code
  ///  // Compute shortest path from node s to each node
  ///  dijkstra(g,length).predMap(preds).distMap(dists).run(s);
  ///
  ///  // Compute shortest path from s to t
  ///  bool reached = dijkstra(g,length).path(p).dist(d).run(s,t);
  ///\endcode
  ///\warning Don't forget to put the \ref DijkstraWizard::run(Node) "run()"
  ///to the end of the parameter list.
  ///\sa DijkstraWizard
  ///\sa Dijkstra
  template<typename GR, typename LEN>
  DijkstraWizard<DijkstraWizardBase<GR,LEN> >
  dijkstra(const GR &digraph, const LEN &length)
  {
    return DijkstraWizard<DijkstraWizardBase<GR,LEN> >(digraph,length);
  }

} //END OF NAMESPACE LEMON

#endif