This file is indexed.

/usr/lib/hugs/packages/mtl/Control/Monad/State.hs is in libhugs-mtl-bundled 98.200609.21-5.4+b3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
{-# OPTIONS -fallow-undecidable-instances #-}
-- Search for -fallow-undecidable-instances to see why this is needed

-----------------------------------------------------------------------------
-- |
-- Module      :  Control.Monad.State
-- Copyright   :  (c) Andy Gill 2001,
-- 		  (c) Oregon Graduate Institute of Science and Technology, 2001
-- License     :  BSD-style (see the file libraries/base/LICENSE)
-- 
-- Maintainer  :  libraries@haskell.org
-- Stability   :  experimental
-- Portability :  non-portable (multi-param classes, functional dependencies)
--
-- State monads.
--
--	  This module is inspired by the paper
--	  /Functional Programming with Overloading and
--	      Higher-Order Polymorphism/, 
--	    Mark P Jones (<http://www.cse.ogi.edu/~mpj/>)
--		  Advanced School of Functional Programming, 1995.
--
-- See below for examples.

-----------------------------------------------------------------------------

module Control.Monad.State (
	-- * MonadState class
	MonadState(..),
	modify,
	gets,
	-- * The State Monad
	State(..),
	evalState,
	execState,
	mapState,
	withState,
	-- * The StateT Monad
	StateT(..),
	evalStateT,
	execStateT,
	mapStateT,
	withStateT,
	module Control.Monad,
	module Control.Monad.Fix,
	module Control.Monad.Trans,
	-- * Examples
	-- $examples
  ) where

import Prelude

import Control.Monad
import Control.Monad.Fix
import Control.Monad.Trans
import Control.Monad.Reader
import Control.Monad.Writer

-- ---------------------------------------------------------------------------
-- | /get/ returns the state from the internals of the monad.
--
-- /put/ replaces the state inside the monad.

class (Monad m) => MonadState s m | m -> s where
	get :: m s
	put :: s -> m ()

-- | Monadic state transformer.
--
--      Maps an old state to a new state inside a state monad.
--      The old state is thrown away.
--
-- >	  Main> :t modify ((+1) :: Int -> Int)
-- >	  modify (...) :: (MonadState Int a) => a ()
--
--	This says that @modify (+1)@ acts over any
--	Monad that is a member of the @MonadState@ class,
--	with an @Int@ state.

modify :: (MonadState s m) => (s -> s) -> m ()
modify f = do
	s <- get
	put (f s)

-- | Gets specific component of the state, using a projection function
-- supplied.

gets :: (MonadState s m) => (s -> a) -> m a
gets f = do
	s <- get
	return (f s)

-- ---------------------------------------------------------------------------
-- | A parameterizable state monad where /s/ is the type of the state
-- to carry and /a/ is the type of the /return value/.

newtype State s a = State { runState :: s -> (a, s) }

-- The State Monad structure is parameterized over just the state.

instance Functor (State s) where
	fmap f m = State $ \s -> let
		(a, s') = runState m s
		in (f a, s')

instance Monad (State s) where
	return a = State $ \s -> (a, s)
	m >>= k  = State $ \s -> let
		(a, s') = runState m s
		in runState (k a) s'

instance MonadFix (State s) where
	mfix f = State $ \s -> let (a, s') = runState (f a) s in (a, s')

instance MonadState s (State s) where
	get   = State $ \s -> (s, s)
	put s = State $ \_ -> ((), s)

-- |Evaluate this state monad with the given initial state,throwing
-- away the final state.  Very much like @fst@ composed with
-- @runstate@.

evalState :: State s a -- ^The state to evaluate
	  -> s         -- ^An initial value
	  -> a         -- ^The return value of the state application
evalState m s = fst (runState m s)

-- |Execute this state and return the new state, throwing away the
-- return value.  Very much like @snd@ composed with
-- @runstate@.

execState :: State s a -- ^The state to evaluate
	  -> s         -- ^An initial value
	  -> s         -- ^The new state
execState m s = snd (runState m s)

-- |Map a stateful computation from one (return value, state) pair to
-- another.  For instance, to convert numberTree from a function that
-- returns a tree to a function that returns the sum of the numbered
-- tree (see the Examples section for numberTree and sumTree) you may
-- write:
--
-- > sumNumberedTree :: (Eq a) => Tree a -> State (Table a) Int
-- > sumNumberedTree = mapState (\ (t, tab) -> (sumTree t, tab))  . numberTree

mapState :: ((a, s) -> (b, s)) -> State s a -> State s b
mapState f m = State $ f . runState m

-- |Apply this function to this state and return the resulting state.
withState :: (s -> s) -> State s a -> State s a
withState f m = State $ runState m . f

-- ---------------------------------------------------------------------------
-- | A parameterizable state monad for encapsulating an inner
-- monad.
--
-- The StateT Monad structure is parameterized over two things:
--
--   * s - The state.
--
--   * m - The inner monad.
--
-- Here are some examples of use:
--
-- (Parser from ParseLib with Hugs)
--
-- >  type Parser a = StateT String [] a
-- >     ==> StateT (String -> [(a,String)])
--
-- For example, item can be written as:
--
-- >   item = do (x:xs) <- get
-- >          put xs
-- >          return x
-- >
-- >   type BoringState s a = StateT s Indentity a
-- >        ==> StateT (s -> Identity (a,s))
-- >
-- >   type StateWithIO s a = StateT s IO a
-- >        ==> StateT (s -> IO (a,s))
-- >
-- >   type StateWithErr s a = StateT s Maybe a
-- >        ==> StateT (s -> Maybe (a,s))

newtype StateT s m a = StateT { runStateT :: s -> m (a,s) }

instance (Monad m) => Functor (StateT s m) where
	fmap f m = StateT $ \s -> do
		(x, s') <- runStateT m s
		return (f x, s')

instance (Monad m) => Monad (StateT s m) where
	return a = StateT $ \s -> return (a, s)
	m >>= k  = StateT $ \s -> do
		(a, s') <- runStateT m s
		runStateT (k a) s'
	fail str = StateT $ \_ -> fail str

instance (MonadPlus m) => MonadPlus (StateT s m) where
	mzero       = StateT $ \_ -> mzero
	m `mplus` n = StateT $ \s -> runStateT m s `mplus` runStateT n s

instance (MonadFix m) => MonadFix (StateT s m) where
	mfix f = StateT $ \s -> mfix $ \ ~(a, _) -> runStateT (f a) s

instance (Monad m) => MonadState s (StateT s m) where
	get   = StateT $ \s -> return (s, s)
	put s = StateT $ \_ -> return ((), s)

instance MonadTrans (StateT s) where
	lift m = StateT $ \s -> do
		a <- m
		return (a, s)

instance (MonadIO m) => MonadIO (StateT s m) where
	liftIO = lift . liftIO

-- Needs -fallow-undecidable-instances
instance (MonadReader r m) => MonadReader r (StateT s m) where
	ask       = lift ask
	local f m = StateT $ \s -> local f (runStateT m s)

-- Needs -fallow-undecidable-instances
instance (MonadWriter w m) => MonadWriter w (StateT s m) where
	tell     = lift . tell
	listen m = StateT $ \s -> do
		((a, s'), w) <- listen (runStateT m s)
		return ((a, w), s')
	pass   m = StateT $ \s -> pass $ do
		((a, f), s') <- runStateT m s
		return ((a, s'), f)

-- |Similar to 'evalState'
evalStateT :: (Monad m) => StateT s m a -> s -> m a
evalStateT m s = do
	(a, _) <- runStateT m s
	return a

-- |Similar to 'execState'
execStateT :: (Monad m) => StateT s m a -> s -> m s
execStateT m s = do
	(_, s') <- runStateT m s
	return s'

-- |Similar to 'mapState'
mapStateT :: (m (a, s) -> n (b, s)) -> StateT s m a -> StateT s n b
mapStateT f m = StateT $ f . runStateT m

-- |Similar to 'withState'
withStateT :: (s -> s) -> StateT s m a -> StateT s m a
withStateT f m = StateT $ runStateT m . f

-- ---------------------------------------------------------------------------
-- MonadState instances for other monad transformers

-- Needs -fallow-undecidable-instances
instance (MonadState s m) => MonadState s (ReaderT r m) where
	get = lift get
	put = lift . put

-- Needs -fallow-undecidable-instances
instance (Monoid w, MonadState s m) => MonadState s (WriterT w m) where
	get = lift get
	put = lift . put

-- ---------------------------------------------------------------------------
-- $examples
-- A function to increment a counter.  Taken from the paper
-- /Generalising Monads to Arrows/, John
-- Hughes (<http://www.math.chalmers.se/~rjmh/>), November 1998:
--
-- > tick :: State Int Int
-- > tick = do n <- get
-- >           put (n+1)
-- >           return n
--
-- Add one to the given number using the state monad:
--
-- > plusOne :: Int -> Int
-- > plusOne n = execState tick n
--
-- A contrived addition example. Works only with positive numbers:
--
-- > plus :: Int -> Int -> Int
-- > plus n x = execState (sequence $ replicate n tick) x
--
-- An example from /The Craft of Functional Programming/, Simon
-- Thompson (<http://www.cs.kent.ac.uk/people/staff/sjt/>),
-- Addison-Wesley 1999: \"Given an arbitrary tree, transform it to a
-- tree of integers in which the original elements are replaced by
-- natural numbers, starting from 0.  The same element has to be
-- replaced by the same number at every occurrence, and when we meet
-- an as-yet-unvisited element we have to find a \'new\' number to match
-- it with:\"
--
-- > data Tree a = Nil | Node a (Tree a) (Tree a) deriving (Show, Eq)
-- > type Table a = [a]
--
-- > numberTree :: Eq a => Tree a -> State (Table a) (Tree Int)
-- > numberTree Nil = return Nil
-- > numberTree (Node x t1 t2) 
-- >        =  do num <- numberNode x
-- >              nt1 <- numberTree t1
-- >              nt2 <- numberTree t2
-- >              return (Node num nt1 nt2)
-- >     where 
-- >     numberNode :: Eq a => a -> State (Table a) Int
-- >     numberNode x
-- >        = do table <- get
-- >             (newTable, newPos) <- return (nNode x table)
-- >             put newTable
-- >             return newPos
-- >     nNode::  (Eq a) => a -> Table a -> (Table a, Int)
-- >     nNode x table
-- >        = case (findIndexInList (== x) table) of
-- >          Nothing -> (table ++ [x], length table)
-- >          Just i  -> (table, i)
-- >     findIndexInList :: (a -> Bool) -> [a] -> Maybe Int
-- >     findIndexInList = findIndexInListHelp 0
-- >     findIndexInListHelp _ _ [] = Nothing
-- >     findIndexInListHelp count f (h:t)
-- >        = if (f h)
-- >          then Just count
-- >          else findIndexInListHelp (count+1) f t
--
-- numTree applies numberTree with an initial state:
--
-- > numTree :: (Eq a) => Tree a -> Tree Int
-- > numTree t = evalState (numberTree t) []
--
-- > testTree = Node "Zero" (Node "One" (Node "Two" Nil Nil) (Node "One" (Node "Zero" Nil Nil) Nil)) Nil
-- > numTree testTree => Node 0 (Node 1 (Node 2 Nil Nil) (Node 1 (Node 0 Nil Nil) Nil)) Nil
--
-- sumTree is a little helper function that does not use the State monad:
--
-- > sumTree :: (Num a) => Tree a -> a
-- > sumTree Nil = 0
-- > sumTree (Node e t1 t2) = e + (sumTree t1) + (sumTree t2)