This file is indexed.

/usr/lib/hugs/packages/HaXml/Text/ParserCombinators/HuttonMeijerWallace.hs is in libhugs-haxml-bundled 98.200609.21-5.4+b3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
{-----------------------------------------------------------------------------

                 A LIBRARY OF MONADIC PARSER COMBINATORS

                              29th July 1996

                 Graham Hutton               Erik Meijer
            University of Nottingham    University of Utrecht

This Haskell 1.3 script defines a library of parser combinators, and is taken
from sections 1-6 of our article "Monadic Parser Combinators".  Some changes
to the library have been made in the move from Gofer to Haskell:

   * Do notation is used in place of monad comprehension notation;

   * The parser datatype is defined using "newtype", to avoid the overhead
     of tagging and untagging parsers with the P constructor.

------------------------------------------------------------------------------
** Extended to allow a symbol table/state to be threaded through the monad.
** Extended to allow a parameterised token type, rather than just strings.
** Extended to allow error-reporting.

(Extensions: 1998-2000 Malcolm.Wallace@cs.york.ac.uk)
(More extensions: 2004 gk-haskell@ninebynine.org)

------------------------------------------------------------------------------}

-- | This library of monadic parser combinators is based on the ones
--   defined by Graham Hutton and Erik Meijer.  It has been extended by
--   Malcolm Wallace to use an abstract token type (no longer just a
--   string) as input, and to incorporate a State Transformer monad, useful
--   for symbol tables, macros, and so on.  Basic facilities for error
--   reporting have also been added, and later extended by Graham Klyne
--   to return the errors through an @Either@ type, rather than just
--   calling @error@.

module Text.ParserCombinators.HuttonMeijerWallace
  (
  -- * The parser monad
    Parser(..)
  -- * Primitive parser combinators
  , item, eof, papply, papply'
  -- * Derived combinators
  , (+++), {-sat,-} tok, nottok, many, many1
  , sepby, sepby1, chainl, chainl1, chainr, chainr1, ops, bracket
  , toEOF
  -- * Error handling
  , elserror
  -- * State handling
  , stupd, stquery, stget
  -- * Re-parsing
  , reparse
  ) where

import Char
import Monad

infixr 5 +++

--- The parser monad ---------------------------------------------------------

type ParseResult s t e a = Either e [(a,s,[Either e t])]

newtype Parser s t e a   = P ( s -> [Either e t] -> ParseResult s t e a )
    -- ^ The parser type is parametrised on the types of the state @s@,
    --   the input tokens @t@, error-type @e@, and the result value @a@.
    --   The state and remaining input are threaded through the monad.

instance Functor (Parser s t e) where
   -- fmap        :: (a -> b) -> (Parser s t e a -> Parser s t e b)
   fmap f (P p)    = P (\st inp -> case p st inp of
                        Right res -> Right [(f v, s, out) | (v,s,out) <- res]
                        Left err  -> Left err
                       )

instance Monad (Parser s t e) where
   -- return      :: a -> Parser s t e a
   return v        = P (\st inp -> Right [(v,st,inp)])
   -- >>=         :: Parser s t e a -> (a -> Parser s t e b) -> Parser s t e b
   (P p) >>= f     = P (\st inp -> case p st inp of
                        Right res -> foldr joinresults (Right [])
                            [ papply' (f v) s out | (v,s,out) <- res ]
                        Left err  -> Left err
                       )
   -- fail        :: String -> Parser s t e a
   fail err        = P (\st inp -> Right [])
  -- I know it's counterintuitive, but we want no-parse, not an error.

instance MonadPlus (Parser s t e) where
   -- mzero       :: Parser s t e a
   mzero           = P (\st inp -> Right [])
   -- mplus       :: Parser s t e a -> Parser s t e a -> Parser s t e a
   (P p) `mplus` (P q) = P (\st inp -> joinresults (p st inp) (q st inp))

-- joinresults ensures that explicitly raised errors are dominant,
-- provided no parse has yet been found.  The commented out code is
-- a slightly stricter specification of the real code.
joinresults :: ParseResult s t e a -> ParseResult s t e a -> ParseResult s t e a
{-
joinresults (Left  p)  (Left  q)  = Left  p
joinresults (Left  p)  (Right _)  = Left  p
joinresults (Right []) (Left  q)  = Left  q
joinresults (Right p)  (Left  q)  = Right p
joinresults (Right p)  (Right q)  = Right (p++q)
-}
joinresults (Left  p)  q  = Left p
joinresults (Right []) q  = q
joinresults (Right p)  q  = Right (p++ case q of Left _  -> []
                                                 Right r -> r)


--- Primitive parser combinators ---------------------------------------------

-- | Deliver the first remaining token.
item              :: Parser s t e t
item               = P (\st inp -> case inp of
                        []            -> Right []
                        (Left e: _)   -> Left e
                        (Right x: xs) -> Right [(x,st,xs)]
                       )

-- | Fail if end of input is not reached
eof               :: Show p => Parser s (p,t) String ()
eof                = P (\st inp -> case inp of
                        []         -> Right [((),st,[])]
                        (Left e:_) -> Left e
                        (Right (p,_):_) -> Left ("End of input expected at "
                                                 ++show p++"\n  but found text")
                       )

{-
-- | Ensure the value delivered by the parser is evaluated to WHNF.
force             :: Parser s t e a -> Parser s t e a
force (P p)        = P (\st inp -> let Right xs = p st inp
                                       h = head xs in
                                   h `seq` Right (h: tail xs)
                       )
--  [[[GK]]]  ^^^^^^
--  WHNF = Weak Head Normal Form, meaning that it has no top-level redex.
--  In this case, I think that means that the first element of the list
--  is fully evaluated.
--
--  NOTE:  the original form of this function fails if there is no parse
--  result for p st inp (head xs fails if xs is null), so the modified
--  form can assume a Right value only.
--
--  Why is this needed?
--  It's not exported, and the only use of this I see is commented out.
---------------------------------------
-}


-- | Deliver the first parse result only, eliminating any backtracking.
first             :: Parser s t e a -> Parser s t e a
first (P p)        = P (\st inp -> case p st inp of
                                   Right (x:xs) -> Right [x]
                                   otherwise    -> otherwise
                       )

-- | Apply the parser to some real input, given an initial state value.
--   If the parser fails, raise 'error' to halt the program.
--   (This is the original exported behaviour - to allow the caller to
--   deal with the error differently, see @papply'@.)
papply            :: Parser s t String a -> s -> [Either String t]
                                              -> [(a,s,[Either String t])]
papply (P p) st inp = either error id (p st inp)

-- | Apply the parser to some real input, given an initial state value.
--   If the parser fails, return a diagnostic message to the caller.
papply'           :: Parser s t e a -> s -> [Either e t]
                                         -> Either e [(a,s,[Either e t])]
papply' (P p) st inp = p st inp

--- Derived combinators ------------------------------------------------------

-- | A choice between parsers.  Keep only the first success.
(+++)             :: Parser s t e a -> Parser s t e a -> Parser s t e a
p +++ q            = first (p `mplus` q)

-- | Deliver the first token if it satisfies a predicate.
sat               :: (t -> Bool) -> Parser s (p,t) e t
sat p              = do {(_,x) <- item; if p x then return x else mzero}

-- | Deliver the first token if it equals the argument.
tok               :: Eq t => t -> Parser s (p,t) e t
tok t              = do {(_,x) <- item; if x==t then return t else mzero}

-- | Deliver the first token if it does not equal the argument.
nottok            :: Eq t => [t] -> Parser s (p,t) e t
nottok ts          = do {(_,x) <- item; if x `notElem` ts then return x
                                        else mzero}

-- | Deliver zero or more values of @a@.
many              :: Parser s t e a -> Parser s t e [a]
many p             = many1 p +++ return []
--many p           = force (many1 p +++ return [])

-- | Deliver one or more values of @a@.
many1             :: Parser s t e a -> Parser s t e [a]
many1 p            = do {x <- p; xs <- many p; return (x:xs)}

-- | Deliver zero or more values of @a@ separated by @b@'s.
sepby             :: Parser s t e a -> Parser s t e b -> Parser s t e [a]
p `sepby` sep      = (p `sepby1` sep) +++ return []

-- | Deliver one or more values of @a@ separated by @b@'s.
sepby1            :: Parser s t e a -> Parser s t e b -> Parser s t e [a]
p `sepby1` sep     = do {x <- p; xs <- many (do {sep; p}); return (x:xs)}

chainl            :: Parser s t e a -> Parser s t e (a->a->a) -> a
                                                              -> Parser s t e a
chainl p op v      = (p `chainl1` op) +++ return v

chainl1           :: Parser s t e a -> Parser s t e (a->a->a) -> Parser s t e a
p `chainl1` op     = do {x <- p; rest x}
                     where
                        rest x = do {f <- op; y <- p; rest (f x y)}
                                 +++ return x

chainr            :: Parser s t e a -> Parser s t e (a->a->a) -> a
                                                              -> Parser s t e a
chainr p op v      = (p `chainr1` op) +++ return v

chainr1           :: Parser s t e a -> Parser s t e (a->a->a) -> Parser s t e a
p `chainr1` op     = do {x <- p; rest x}
                     where
                        rest x = do { f <- op
                                    ; y <- p `chainr1` op
                                    ; return (f x y)
                                    }
                                 +++ return x

ops               :: [(Parser s t e a, b)] -> Parser s t e b
ops xs             = foldr1 (+++) [do {p; return op} | (p,op) <- xs]

bracket           :: (Show p,Show t) =>
                     Parser s (p,t) e a -> Parser s (p,t) e b ->
                               Parser s (p,t) e c -> Parser s (p,t) e b
bracket open p close = do { open
                          ; x <- p
                          ; close -- `elserror` "improperly matched construct";
                          ; return x
                          }

-- | Accept a complete parse of the input only, no partial parses.
toEOF             :: Show p =>
                     Parser s (p,t) String a -> Parser s (p,t) String a
toEOF p            = do { x <- p; eof; return x }


--- Error handling -----------------------------------------------------------

-- | Return an error using the supplied diagnostic string, and a token type
--   which includes position information.
parseerror :: (Show p,Show t) => String -> Parser s (p,t) String a
parseerror err = P (\st inp ->
                         case inp of
                           [] -> Left "Parse error: unexpected EOF\n"
                           (Left e:_) -> Left ("Lexical error:  "++e)
                           (Right (p,t):_)  ->
                                 Left ("Parse error: in  "++show p++"\n    "
                                       ++err++"\n  "++"Found "++show t)
                   )


-- | If the parser fails, generate an error message.
elserror          :: (Show p,Show t) => Parser s (p,t) String a -> String
                                        -> Parser s (p,t) String a
p `elserror` s     = p +++ parseerror s

--- State handling -----------------------------------------------------------

-- | Update the internal state.
stupd      :: (s->s) -> Parser s t e ()
stupd f     = P (\st inp-> {-let newst = f st in newst `seq`-}
                           Right [((), f st, inp)])

-- | Query the internal state.
stquery    :: (s->a) -> Parser s t e a
stquery f   = P (\st inp-> Right [(f st, st, inp)])

-- | Deliver the entire internal state.
stget      :: Parser s t e s
stget       = P (\st inp-> Right [(st, st, inp)])


--- Push some tokens back onto the input stream and reparse ------------------

-- | This is useful for recursively expanding macros.  When the
--   user-parser recognises a macro use, it can lookup the macro
--   expansion from the parse state, lex it, and then stuff the
--   lexed expansion back down into the parser.
reparse    :: [Either e t] -> Parser s t e ()
reparse ts  = P (\st inp-> Right [((), st, ts++inp)])

------------------------------------------------------------------------------