/usr/include/hmat/clustering.hpp is in libhmat-oss-dev 1.2.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 | /*
HMat-OSS (HMatrix library, open source software)
Copyright (C) 2014-2015 Airbus Group SAS
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
http://github.com/jeromerobert/hmat-oss
*/
/*! \file
\ingroup Clustering
\brief Spatial cluster tree for the Dofs.
*/
#ifndef _HMAT_CLUSTERING_HPP
#define _HMAT_CLUSTERING_HPP
#include <vector>
#include <list>
#include <string>
namespace hmat {
// Forward declarations
class ClusterTree;
class DofCoordinates;
class ClusteringAlgorithm;
class AxisAlignedBoundingBox;
class ClusterTreeBuilder {
public:
explicit ClusterTreeBuilder(const ClusteringAlgorithm& algo);
~ClusterTreeBuilder();
/*! \brief Specify an algorithm for nodes at given depth and below */
ClusterTreeBuilder& addAlgorithm(int depth, const ClusteringAlgorithm& algo);
/*! \brief Recursively apply splitting algorithms on points to create a ClusterTree instance.
\param coordinates node coordinates
\param group_index optional array containing group numbers of points. Points of the same group cannot be scattered into different tree leaves.
\return a ClusterTree instance
*/
ClusterTree* build(const DofCoordinates& coordinates, int* group_index = NULL) const;
private:
void divide_recursive(ClusterTree& current) const;
void clean_recursive(ClusterTree& current) const;
ClusteringAlgorithm* getAlgorithm(int depth) const;
private:
// Sequence of algorithms applied
std::list<std::pair<int, ClusteringAlgorithm*> > algo_;
};
class ClusteringAlgorithm
{
public:
/*! \brief Default constructor */
ClusteringAlgorithm() : maxLeafSize_(-1), divider_(2) {}
/*! \brief Virtual constructor */
virtual ClusteringAlgorithm* clone() const = 0;
/*! \brief Destructor */
virtual ~ClusteringAlgorithm() {}
/*! \brief String representation */
virtual std::string str() const = 0;
/*! \brief Split cluster node */
virtual void partition(ClusterTree& current, std::vector<ClusterTree*>& children) const = 0;
/*! \brief Called by ClusterTreeBuilder::clean_recursive to free data which may be allocated by partition */
virtual void clean(ClusterTree&) const {}
int getMaxLeafSize() const;
void setMaxLeafSize(int maxLeafSize);
int getDivider() const;
void setDivider(int divider);
private:
int maxLeafSize_;
protected:
/* the number of children created by division at each level (2 by default) */
int divider_ ;
};
class AxisAlignClusteringAlgorithm : public ClusteringAlgorithm {
protected:
void sortByDimension(ClusterTree& node, int dim) const;
virtual AxisAlignedBoundingBox* getAxisAlignedBoundingbox(const ClusterTree& node) const;
int largestDimension(const ClusterTree& node) const;
double volume(const ClusterTree& node) const;
void sort(ClusterTree& current, int axisIndex, int spatialDimension) const;
};
/*! \brief Creating tree by geometric binary division according to
the largest dimension.
For this tree, if a leaf has too many DOFs, the division is done by
dividing the bounding box in the middle of its largest dimension.
The boxes of children are resized to the real dimension of the DOFs.
This method ensures that both 2 children won't be empty, but not the
equal repartition of DOFs on both sides of the boundary.
If optional argument axisIndex is set, cyclic splitting is performed
instead, and this argument is the first axis index.
*/
class GeometricBisectionAlgorithm : public AxisAlignClusteringAlgorithm
{
public:
explicit GeometricBisectionAlgorithm(int axisIndex = -1)
: AxisAlignClusteringAlgorithm(), axisIndex_(axisIndex), spatialDimension_(-1) {}
ClusteringAlgorithm* clone() const { return new GeometricBisectionAlgorithm(*this); }
std::string str() const { return "GeometricBisectionAlgorithm"; }
void partition(ClusterTree& current, std::vector<ClusterTree*>& children) const;
void clean(ClusterTree& current) const;
private:
mutable int axisIndex_;
mutable int spatialDimension_;
};
/*! \brief Creating tree by median division.
For the division of a leaf, we chose the biggest dimension
of bounding box and divide it according to this axis. The DOFs are
sorted by the increasing order on this direction, and are divided
in the median of this axis. This method ensures that the children
will have equal number of DOFs, but desn't respect their size criterion.
If optional argument axisIndex is set, cyclic splitting is performed
instead, and this argument is the first axis index.
The bounding boxes of the children are resized to the necessary size.
*/
class MedianBisectionAlgorithm : public AxisAlignClusteringAlgorithm
{
public:
explicit MedianBisectionAlgorithm(int axisIndex = -1)
: AxisAlignClusteringAlgorithm(), axisIndex_(axisIndex), spatialDimension_(-1) {}
ClusteringAlgorithm* clone() const { return new MedianBisectionAlgorithm(*this); }
std::string str() const { return "MedianBisectionAlgorithm"; }
void partition(ClusterTree& current, std::vector<ClusterTree*>& children) const;
void clean(ClusterTree& current) const;
private:
mutable int axisIndex_;
mutable int spatialDimension_;
};
/*! \brief Hybrid algorithm.
We first split tree node with an MedianBisectionAlgorithm instance, and compute
ratios of volume of children node divided by volume of current node. If any ratio
is larger than a given threshold, this splitting is discarded and replaced by
a GeometricBisectionAlgorithm instead.
*/
class HybridBisectionAlgorithm : public AxisAlignClusteringAlgorithm
{
public:
explicit HybridBisectionAlgorithm(double thresholdRatio = 0.8)
: AxisAlignClusteringAlgorithm()
, geometricAlgorithm_(0)
, medianAlgorithm_(0)
, thresholdRatio_(thresholdRatio)
{}
ClusteringAlgorithm* clone() const { return new HybridBisectionAlgorithm(*this); }
std::string str() const { return "HybridBisectionAlgorithm"; }
void partition(ClusterTree& current, std::vector<ClusterTree*>& children) const;
void clean(ClusterTree& current) const;
private:
const GeometricBisectionAlgorithm geometricAlgorithm_;
const MedianBisectionAlgorithm medianAlgorithm_;
const double thresholdRatio_;
};
class VoidClusteringAlgorithm : public AxisAlignClusteringAlgorithm
{
public:
explicit VoidClusteringAlgorithm(const ClusteringAlgorithm &algo)
: AxisAlignClusteringAlgorithm(), algo_(algo.clone()) {}
ClusteringAlgorithm* clone() const { return new VoidClusteringAlgorithm(*this); }
std::string str() const { return "VoidClusteringAlgorithm"; }
void partition(ClusterTree& current, std::vector<ClusterTree*>& children) const;
void clean(ClusterTree& current) const;
private:
const ClusteringAlgorithm *algo_;
};
} // end namespace hmat
#endif /* _HMAT_CLUSTERING_HPP */
|