/usr/include/glibmm-2.4/glibmm/refptr.h is in libglibmm-2.4-dev 2.50.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 | #ifndef _GLIBMM_REFPTR_H
#define _GLIBMM_REFPTR_H
/* Copyright 2002 The gtkmm Development Team
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <glibmmconfig.h>
#include <glib.h>
#include <utility>
namespace Glib
{
/** RefPtr<> is a reference-counting shared smartpointer.
*
* Some objects in gtkmm are obtained from a shared
* store. Consequently you cannot instantiate them yourself. Instead they
* return a RefPtr which behaves much like an ordinary pointer in that members
* can be reached with the usual <code>object_ptr->member</code> notation.
* Unlike most other smart pointers, RefPtr doesn't support dereferencing
* through <code>*object_ptr</code>.
*
* Reference counting means that a shared reference count is incremented each
* time a RefPtr is copied, and decremented each time a RefPtr is destroyed,
* for instance when it leaves its scope. When the reference count reaches
* zero, the contained object is deleted, meaning you don't need to remember
* to delete the object.
*
* RefPtr<> can store any class that has reference() and unreference() methods,
* and whose destructor is noexcept (the default for destructors).
* In gtkmm, that is anything derived from Glib::ObjectBase, such as
* Gdk::Pixmap.
*
* See the "Memory Management" section in the "Programming with gtkmm"
* book for further information.
*/
template <class T_CppObject>
class RefPtr
{
private:
#ifndef DOXYGEN_SHOULD_SKIP_THIS
/** Helper class for disallowing use of Glib::RefPtr with certain classes.
*
* Disallow for instance in Gtk::Widget and its subclasses.
* Glib::RefPtr<T>::is_allowed_type::value is false if
* T:dont_allow_use_in_glib_refptr_ is a public type, else it's true.
* Example:
* @code
* using dont_allow_use_in_glib_refptr_ = int;
* @endcode
*/
class is_allowed_type
{
private:
struct big
{
int memory[64];
};
static big check(...);
// If X::dont_allow_use_in_glib_refptr_ is not a type, this check() overload
// is ignored because of the SFINAE rule (Substitution Failure Is Not An Error).
template <typename X>
static typename X::dont_allow_use_in_glib_refptr_ check(X* obj);
public:
static const bool value = sizeof(check(static_cast<T_CppObject*>(nullptr))) == sizeof(big);
};
static_assert(is_allowed_type::value, "Glib::RefPtr must not be used with this class.");
#endif /* DOXYGEN_SHOULD_SKIP_THIS */
public:
/** Default constructor
*
* Afterwards it will be null and use of -> will cause a segmentation fault.
*/
inline RefPtr() noexcept;
/// Destructor - decrements reference count.
inline ~RefPtr() noexcept;
/// For use only by the \::create() methods.
explicit inline RefPtr(T_CppObject* pCppObject) noexcept;
/** Copy constructor
*
* This increments the shared reference count.
*/
inline RefPtr(const RefPtr& src) noexcept;
/** Move constructor
*/
inline RefPtr(RefPtr&& src) noexcept;
/** Move constructor (from different, but castable type).
*/
template <class T_CastFrom>
inline RefPtr(RefPtr<T_CastFrom>&& src) noexcept;
/** Copy constructor (from different, but castable type).
*
* Increments the reference count.
*/
template <class T_CastFrom>
inline RefPtr(const RefPtr<T_CastFrom>& src) noexcept;
/** Swap the contents of two RefPtr<>.
* This method swaps the internal pointers to T_CppObject. This can be
* done safely without involving a reference/unreference cycle and is
* therefore highly efficient.
*/
inline void swap(RefPtr& other) noexcept;
/// Copy from another RefPtr:
inline RefPtr& operator=(const RefPtr& src) noexcept;
/// Move assignment operator:
inline RefPtr& operator=(RefPtr&& src) noexcept;
/// Move assignment operator (from different, but castable type):
template <class T_CastFrom>
inline RefPtr& operator=(RefPtr<T_CastFrom>&& src) noexcept;
/** Copy from different, but castable type).
*
* Increments the reference count.
*/
template <class T_CastFrom>
inline RefPtr& operator=(const RefPtr<T_CastFrom>& src) noexcept;
/// Tests whether the RefPtr<> point to the same underlying instance.
inline bool operator==(const RefPtr& src) const noexcept;
/// See operator==().
inline bool operator!=(const RefPtr& src) const noexcept;
/** Dereferencing.
*
* Use the methods of the underlying instance like so:
* <code>refptr->memberfun()</code>.
*/
inline T_CppObject* operator->() const noexcept;
/** Test whether the RefPtr<> points to any underlying instance.
*
* Mimics usage of ordinary pointers:
* @code
* if (ptr)
* do_something();
* @endcode
*/
inline explicit operator bool() const noexcept;
#ifndef GLIBMM_DISABLE_DEPRECATED
/// @deprecated Use reset() instead because this leads to confusion with clear() methods on the
/// underlying class. For instance, people use .clear() when they mean ->clear().
inline void clear() noexcept;
#endif // GLIBMM_DISABLE_DEPRECATED
/** Set underlying instance to nullptr, decrementing reference count of existing instance
* appropriately.
* @newin{2,16}
*/
inline void reset() noexcept;
/** Release the ownership of underlying instance.
*
* RefPtr's underlying instance is set to nullptr, therefore underlying object can't be accessed
* through this RefPtr anymore.
* @return an underlying instance.
*
* Most users should not use release(). It can spoil the automatic destruction
* of the managed object. A legitimate use is if you immediately give RefPtr's
* reference to another object.
*/
inline T_CppObject* release() noexcept G_GNUC_WARN_UNUSED_RESULT;
/** Dynamic cast to derived class.
*
* The RefPtr can't be cast with the usual notation so instead you can use
* @code
* ptr_derived = RefPtr<Derived>::cast_dynamic(ptr_base);
* @endcode
*/
template <class T_CastFrom>
static inline RefPtr cast_dynamic(const RefPtr<T_CastFrom>& src) noexcept;
/** Static cast to derived class.
*
* Like the dynamic cast; the notation is
* @code
* ptr_derived = RefPtr<Derived>::cast_static(ptr_base);
* @endcode
*/
template <class T_CastFrom>
static inline RefPtr cast_static(const RefPtr<T_CastFrom>& src) noexcept;
/** Cast to non-const.
*
* The RefPtr can't be cast with the usual notation so instead you can use
* @code
* ptr_unconst = RefPtr<UnConstType>::cast_const(ptr_const);
* @endcode
*/
template <class T_CastFrom>
static inline RefPtr cast_const(const RefPtr<T_CastFrom>& src) noexcept;
/** Compare based on the underlying instance address.
*
* This is needed in code that requires an ordering on
* RefPtr<T_CppObject> instances, e.g. std::set<RefPtr<T_CppObject> >.
*
* Without these, comparing two RefPtr<T_CppObject> instances
* is still syntactically possible, but the result is semantically
* wrong, as p1 REL_OP p2 is interpreted as (bool)p1 REL_OP (bool)p2.
*/
inline bool operator<(const RefPtr& src) const noexcept;
/// See operator<().
inline bool operator<=(const RefPtr& src) const noexcept;
/// See operator<().
inline bool operator>(const RefPtr& src) const noexcept;
/// See operator<().
inline bool operator>=(const RefPtr& src) const noexcept;
private:
T_CppObject* pCppObject_;
};
#ifndef DOXYGEN_SHOULD_SKIP_THIS
// RefPtr<>::operator->() comes first here since it's used by other methods.
// If it would come after them it wouldn't be inlined.
template <class T_CppObject>
inline T_CppObject* RefPtr<T_CppObject>::operator->() const noexcept
{
return pCppObject_;
}
template <class T_CppObject>
inline RefPtr<T_CppObject>::RefPtr() noexcept : pCppObject_(nullptr)
{
}
template <class T_CppObject>
inline RefPtr<T_CppObject>::~RefPtr() noexcept
{
if (pCppObject_)
pCppObject_->unreference(); // This could cause pCppObject to be deleted.
}
template <class T_CppObject>
inline RefPtr<T_CppObject>::RefPtr(T_CppObject* pCppObject) noexcept : pCppObject_(pCppObject)
{
}
template <class T_CppObject>
inline RefPtr<T_CppObject>::RefPtr(const RefPtr& src) noexcept : pCppObject_(src.pCppObject_)
{
if (pCppObject_)
pCppObject_->reference();
}
template <class T_CppObject>
inline RefPtr<T_CppObject>::RefPtr(RefPtr&& src) noexcept : pCppObject_(src.pCppObject_)
{
src.pCppObject_ = nullptr;
}
template <class T_CppObject>
template <class T_CastFrom>
inline RefPtr<T_CppObject>::RefPtr(RefPtr<T_CastFrom>&& src) noexcept : pCppObject_(src.release())
{
}
// The templated ctor allows copy construction from any object that's
// castable. Thus, it does downcasts:
// base_ref = derived_ref
template <class T_CppObject>
template <class T_CastFrom>
inline RefPtr<T_CppObject>::RefPtr(const RefPtr<T_CastFrom>& src) noexcept :
// A different RefPtr<> will not allow us access to pCppObject_. We need
// to add a get_underlying() for this, but that would encourage incorrect
// use, so we use the less well-known operator->() accessor:
pCppObject_(src.operator->())
{
if (pCppObject_)
pCppObject_->reference();
}
template <class T_CppObject>
inline void
RefPtr<T_CppObject>::swap(RefPtr& other) noexcept
{
T_CppObject* const temp = pCppObject_;
pCppObject_ = other.pCppObject_;
other.pCppObject_ = temp;
}
template <class T_CppObject>
inline RefPtr<T_CppObject>&
RefPtr<T_CppObject>::operator=(const RefPtr& src) noexcept
{
// In case you haven't seen the swap() technique to implement copy
// assignment before, here's what it does:
//
// 1) Create a temporary RefPtr<> instance via the copy ctor, thereby
// increasing the reference count of the source object.
//
// 2) Swap the internal object pointers of *this and the temporary
// RefPtr<>. After this step, *this already contains the new pointer,
// and the old pointer is now managed by temp.
//
// 3) The destructor of temp is executed, thereby unreferencing the
// old object pointer.
//
// This technique is described in Herb Sutter's "Exceptional C++", and
// has a number of advantages over conventional approaches:
//
// - Code reuse by calling the copy ctor.
// - Strong exception safety for free.
// - Self assignment is handled implicitely.
// - Simplicity.
// - It just works and is hard to get wrong; i.e. you can use it without
// even thinking about it to implement copy assignment whereever the
// object data is managed indirectly via a pointer, which is very common.
RefPtr<T_CppObject> temp(src);
this->swap(temp);
return *this;
}
template <class T_CppObject>
inline RefPtr<T_CppObject>&
RefPtr<T_CppObject>::operator=(RefPtr&& src) noexcept
{
RefPtr<T_CppObject> temp(std::move(src));
this->swap(temp);
src.pCppObject_ = nullptr;
return *this;
}
template <class T_CppObject>
template <class T_CastFrom>
inline RefPtr<T_CppObject>&
RefPtr<T_CppObject>::operator=(RefPtr<T_CastFrom>&& src) noexcept
{
if (pCppObject_)
pCppObject_->unreference();
pCppObject_ = src.release();
return *this;
}
template <class T_CppObject>
template <class T_CastFrom>
inline RefPtr<T_CppObject>&
RefPtr<T_CppObject>::operator=(const RefPtr<T_CastFrom>& src) noexcept
{
RefPtr<T_CppObject> temp(src);
this->swap(temp);
return *this;
}
template <class T_CppObject>
inline bool
RefPtr<T_CppObject>::operator==(const RefPtr& src) const noexcept
{
return (pCppObject_ == src.pCppObject_);
}
template <class T_CppObject>
inline bool
RefPtr<T_CppObject>::operator!=(const RefPtr& src) const noexcept
{
return (pCppObject_ != src.pCppObject_);
}
template <class T_CppObject>
inline RefPtr<T_CppObject>::operator bool() const noexcept
{
return (pCppObject_ != nullptr);
}
#ifndef GLIBMM_DISABLE_DEPRECATED
template <class T_CppObject>
inline void
RefPtr<T_CppObject>::clear() noexcept
{
reset();
}
#endif // GLIBMM_DISABLE_DEPRECATED
template <class T_CppObject>
inline void
RefPtr<T_CppObject>::reset() noexcept
{
RefPtr<T_CppObject> temp; // swap with an empty RefPtr<> to clear *this
this->swap(temp);
}
template <class T_CppObject>
inline T_CppObject*
RefPtr<T_CppObject>::release() noexcept
{
T_CppObject* tmp = pCppObject_;
pCppObject_ = nullptr;
return tmp;
}
template <class T_CppObject>
template <class T_CastFrom>
inline RefPtr<T_CppObject>
RefPtr<T_CppObject>::cast_dynamic(const RefPtr<T_CastFrom>& src) noexcept
{
T_CppObject* const pCppObject = dynamic_cast<T_CppObject*>(src.operator->());
if (pCppObject)
pCppObject->reference();
return RefPtr<T_CppObject>(pCppObject);
}
template <class T_CppObject>
template <class T_CastFrom>
inline RefPtr<T_CppObject>
RefPtr<T_CppObject>::cast_static(const RefPtr<T_CastFrom>& src) noexcept
{
T_CppObject* const pCppObject = static_cast<T_CppObject*>(src.operator->());
if (pCppObject)
pCppObject->reference();
return RefPtr<T_CppObject>(pCppObject);
}
template <class T_CppObject>
template <class T_CastFrom>
inline RefPtr<T_CppObject>
RefPtr<T_CppObject>::cast_const(const RefPtr<T_CastFrom>& src) noexcept
{
T_CppObject* const pCppObject = const_cast<T_CppObject*>(src.operator->());
if (pCppObject)
pCppObject->reference();
return RefPtr<T_CppObject>(pCppObject);
}
template <class T_CppObject>
inline bool
RefPtr<T_CppObject>::operator<(const RefPtr& src) const noexcept
{
return (pCppObject_ < src.pCppObject_);
}
template <class T_CppObject>
inline bool
RefPtr<T_CppObject>::operator<=(const RefPtr& src) const noexcept
{
return (pCppObject_ <= src.pCppObject_);
}
template <class T_CppObject>
inline bool
RefPtr<T_CppObject>::operator>(const RefPtr& src) const noexcept
{
return (pCppObject_ > src.pCppObject_);
}
template <class T_CppObject>
inline bool
RefPtr<T_CppObject>::operator>=(const RefPtr& src) const noexcept
{
return (pCppObject_ >= src.pCppObject_);
}
#endif /* DOXYGEN_SHOULD_SKIP_THIS */
/** @relates Glib::RefPtr */
template <class T_CppObject>
inline void
swap(RefPtr<T_CppObject>& lhs, RefPtr<T_CppObject>& rhs) noexcept
{
lhs.swap(rhs);
}
} // namespace Glib
#endif /* _GLIBMM_REFPTR_H */
|