This file is indexed.

/usr/include/givaro/montgomery-ruint.h is in libgivaro-dev 4.0.2-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
// ==========================================================================
// Copyright(c)'1994-2015 by The Givaro group
// This file is part of Givaro.
// Givaro is governed by the CeCILL-B license under French law
// and abiding by the rules of distribution of free software.
// see the COPYRIGHT file for more details.
// Authors: A. Breust <alexis.breust@imag.fr>
// ==========================================================================

#ifndef __GIVARO_montgomery_ruint_H
#define __GIVARO_montgomery_ruint_H

#include "recint/ruint.h"
#include "recint/rmgmodule.h"

#include "givaro/givcaster.h"
#include "givaro/givinteger.h"
#include "givaro/givranditer.h"
#include "givaro/ring-interface.h"

namespace Givaro
{
    template<class TYPE> class Montgomery;

    //! @brief The recint-based Montgomery ring.
    //! You can only odd moduli.
    //! An integer (a mod p) is stored as (a * r mod 2^{2^K}) with (r = 2^{2^K} mod p).

    template<size_t K>
    class Montgomery<RecInt::ruint<K>> : public virtual FiniteFieldInterface<RecInt::ruint<K>>
    {
    public:

	// ----- Exported Types and constantes
	using Element = RecInt::ruint<K>;
	using LargeElement = RecInt::ruint<K+1>;
	using Self_t = Montgomery<RecInt::ruint<K>>;
	using Residu_t = RecInt::ruint<K>;
	enum { size_rep = sizeof(Residu_t) };

	// ----- Representation of vector of the Element
	typedef Element* Array;

	// ----- Constantes
	const Element zero;
	const Element one;
	const Element mOne;

	// ----- Constructors
	Montgomery()
	    :  zero(0), one(1), mOne(-1)
            , _p(0), _p1(0), _r(0), _r2(0), _r3(0)
            {}

	Montgomery(const Residu_t& p)
	    : zero(0)
	    , _p(p)
	{
            RecInt::arazi_qi(_p1, -_p); // p1 = -inv(p) mod 2^(2^K)
            RecInt::mod_n(_r, -_p, _p); // r = 2^(2^K) mod p

            LargeElement ltmp;
            RecInt::lmul(ltmp, _r, _r);
            RecInt::mod_n(_r2, ltmp, _p);   // r2 = r^2 mod p
            RecInt::lmul(ltmp, _r2, _r);
            RecInt::mod_n(_r3, ltmp, _p);   // r2 = r^2 mod p

            RecInt::copy(const_cast<Element&>(one), _r);
            to_mg(const_cast<Element&>(mOne), _p - 1u);

            assert( (_p & 1u) != 0u);
	    assert(_p >= minCardinality());
	    assert(_p <= maxCardinality());
	}

	Montgomery(const Self_t& F)
	    : zero(F.zero), one(F.one), mOne(F.mOne)
	    , _p(F._p), _p1(F._p1), _r(F._r)
            {}

	// ----- Accessors
	inline Element minElement() const override { return zero; }
	inline Element maxElement() const override { return mOne; }

	// ----- Access to the modulus
	inline Residu_t residu() const { return _p; }
	inline Residu_t size() const { return _p; }
	inline Residu_t characteristic() const { return _p; }
	inline Residu_t cardinality() const { return _p; }
	template<class T> inline T& characteristic(T& p) const { return p = _p; }
	template<class T> inline T& cardinality(T& p) const { return p = _p; }

	static inline Residu_t maxCardinality() { return -1; }
	static inline Residu_t minCardinality() { return 2; }

	// ----- Checkers
	inline bool isZero(const Element& a) const override { return a == zero; }
	inline bool isOne (const Element& a) const override { return a == one; }
	inline bool isMOne(const Element& a) const override { return a == mOne; }
	inline bool areEqual(const Element& a, const Element& b) const override { return a == b; }
	inline size_t length(const Element a) const { return size_rep; }

	// ----- Ring-wise operators
	inline bool operator==(const Self_t& F) const { return _p == F._p; }
	inline bool operator!=(const Self_t& F) const { return _p != F._p; }
	inline Self_t& operator=(const Self_t& F)
            {
		F.assign(const_cast<Element&>(one),  F.one);
		F.assign(const_cast<Element&>(zero), F.zero);
		F.assign(const_cast<Element&>(mOne), F.mOne);
		_p = F._p;
		return *this;
            }

	// ----- Initialisation
        Element& init (Element& x) const
        { return x = 0; }
        template<typename T> Element& init(Element& r, const T& a) const
        {
            reduce(r, Caster<Element>((a < 0)? -a : a));
	    if (a < 0) negin(r);
            return to_mg(r);
        }
        Element& init(Element& r, const Integer& a) const
        {
            reduce(r, Caster<Element>((a < 0)? -a : a));
	    if (a < 0) negin(r);
            return to_mg(r);
        }

        Element& assign (Element& x, const Element& y) const
        { return x = y; }
    
        // ----- Convert and reduce
        template<typename T> T& convert(T& r, const Element& a) const
        { Element tmp; return r = Caster<T>(mg_reduc(tmp, a)); }

        Element& reduce (Element& x, const Element& y) const
        { x = y % _p; return x; }
        Element& reduce (Element& x) const
        { x %= _p; return x; }

	// ----- Classic arithmetic
	Element& mul(Element& r, const Element& a, const Element& b) const override;
	Element& div(Element& r, const Element& a, const Element& b) const override;
	Element& add(Element& r, const Element& a, const Element& b) const override;
	Element& sub(Element& r, const Element& a, const Element& b) const override;
	Element& neg(Element& r, const Element& a) const override;
	Element& inv(Element& r, const Element& a) const override;

	Element& mulin(Element& r, const Element& a) const override;
	Element& divin(Element& r, const Element& a) const override;
	Element& addin(Element& r, const Element& a) const override;
	Element& subin(Element& r, const Element& a) const override;
	Element& negin(Element& r) const override;
	Element& invin(Element& r) const override;

	// -- axpy:   r <- a * x + y
	// -- axpyin: r <- a * x + r
	Element& axpy  (Element& r, const Element& a, const Element& x, const Element& y) const override;
	Element& axpyin(Element& r, const Element& a, const Element& x) const override;

	// -- axmy:   r <- a * x - y
	// -- axmyin: r <- a * x - r
	Element& axmy  (Element& r, const Element& a, const Element& x, const Element& y) const override;
	Element& axmyin(Element& r, const Element& a, const Element& x) const override;

	// -- maxpy:   r <- y - a * x
	// -- maxpyin: r <- r - a * x
	Element& maxpy  (Element& r, const Element& a, const Element& x, const Element& y) const override;
	Element& maxpyin(Element& r, const Element& a, const Element& x) const override;

	// ----- Random generators
	typedef ModularRandIter<Self_t> RandIter;
	typedef GeneralRingNonZeroRandIter<Self_t> NonZeroRandIter;
    template< class Random > Element& random(Random& g, Element& r) const
    { RecInt::rand(r); mod_n(r, _p); return r; }
    template< class Random > Element& nonzerorandom(Random& g, Element& a) const
    { while (isZero(random(g, a))) {} return a; }

	// --- IO methods
	std::istream& read (std::istream& s);
	std::ostream& write(std::ostream& s) const;
	std::istream& read (std::istream& s, Element& a) const;
	std::ostream& write(std::ostream& s, const Element& a) const;

    protected:

        // Internal montgomery-reduction. a <- b * r^{-1}
        Element& mg_reduc(Element& a, const Element& b) const;
        Element& mg_reduc(Element& a, const LargeElement& b) const;

        // a <- b * r
        Element& to_mg(Element& a, const Element& b) const;
        Element& to_mg(Element& a) const;

    protected:

        // p is the module (must be odd and > 1)
        RecInt::ruint<K> _p;
        // p1 = -inv(p) mod 2^(2^K)
        RecInt::ruint<K> _p1;
        // r = 2^(2^K) mod p
        RecInt::ruint<K> _r;
        // r2 = r^2 mod p - used to initialize elements
        RecInt::ruint<K> _r2;
        // r3 = r^3 mod p - used to compute inverse
        RecInt::ruint<K> _r3;
    };

} // namespace Givaro

#include "givaro/montgomery-ruint.inl"

#endif