This file is indexed.

/usr/include/ga/GARealGenome.C is in libga-dev 1:2.4.7-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
// $Header$
/* ----------------------------------------------------------------------------
  real.C
  mbwall 11nov95
  Copyright (c) 1995-1996 Massachusetts Institute of Technology
                          all rights reserved

 DESCRIPTION:
   Source file for the real number specialization of the array genome.
---------------------------------------------------------------------------- */
#include <ga/GARealGenome.h>


// We must also specialize the allele set so that the alleles are handled
// properly.  Be sure to handle bounds correctly whether we are discretized
// or continuous.  Handle the case where someone sets stupid bounds that 
// might cause an infinite loop for exclusive bounds.
template <> float
GAAlleleSet<float>::allele() const {
  float value = 0.0;
  if(core->type == GAAllele::ENUMERATED)
    value = core->a[GARandomInt(0, core->sz-1)];
  else if(core->type == GAAllele::DISCRETIZED){
    float n = (core->a[1] - core->a[0]) / core->a[2];
    int m = (int)n;
    if(core->lowerb == GAAllele::EXCLUSIVE) m -= 1;
    if(core->upperb == GAAllele::EXCLUSIVE) m -= 1;
    value = core->a[0] + GARandomInt(0,(int)m) * core->a[2];
    if(core->lowerb == GAAllele::EXCLUSIVE) value += core->a[2];
  }
  else{
    if(core->a[0] == core->a[1] && 
       core->lowerb == GAAllele::EXCLUSIVE && 
       core->upperb == GAAllele::EXCLUSIVE) {
      value = core->a[0];
    }
    else {
      do {
	value = GARandomFloat(core->a[0], core->a[1]);
      } while ((core->lowerb == GAAllele::EXCLUSIVE && value == core->a[0]) ||
	       (core->upperb == GAAllele::EXCLUSIVE && value == core->a[1]));
    }
  }
  return value;
}

// If someone asks for a discretized item that is beyond the bounds, give them
// one of the bounds.  If they ask for allele item when there is no
// discretization or enumeration, then error and return lower bound.
template <> float
GAAlleleSet<float>::allele(unsigned int i) const {
  float value = 0.0;
  if(core->type == GAAllele::ENUMERATED)
    value = core->a[i % core->sz];
  else if(core->type == GAAllele::DISCRETIZED){
    float n = (core->a[1] - core->a[0])/core->a[2];
    unsigned int m = (unsigned int)n;            // what about bogus limits?
    if(core->lowerb == GAAllele::EXCLUSIVE) m -= 1;
    if(core->upperb == GAAllele::EXCLUSIVE) m -= 1;
    if(i > m) i = (int)m;
    value = core->a[0] + i*core->a[2];
    if(core->lowerb == GAAllele::EXCLUSIVE) value += core->a[2];
  }
  else{
    GAErr(GA_LOC, "GAAlleleSet", "allele", gaErrNoAlleleIndex);
    value = core->a[0];
  }
  return value;
}





// now the specialization of the genome itself.

template <> const char * 
GA1DArrayAlleleGenome<float>::className() const {return "GARealGenome";}
template <> int 
GA1DArrayAlleleGenome<float>::classID() const {return GAID::FloatGenome;}

template <> GA1DArrayAlleleGenome<float>::
GA1DArrayAlleleGenome(unsigned int length, const GAAlleleSet<float> & s,
		      GAGenome::Evaluator f, void * u) :
GA1DArrayGenome<float>(length, f, u){
  naset = 1;
  aset = new GAAlleleSet<float>[1];
  aset[0] = s;

  initializer(DEFAULT_REAL_INITIALIZER);
  mutator(DEFAULT_REAL_MUTATOR);
  comparator(DEFAULT_REAL_COMPARATOR);
  crossover(DEFAULT_REAL_CROSSOVER);
}

template <> GA1DArrayAlleleGenome<float>::
GA1DArrayAlleleGenome(const GAAlleleSetArray<float> & sa,
		      GAGenome::Evaluator f, void * u) :
GA1DArrayGenome<float>(sa.size(), f, u){
  naset = sa.size();
  aset = new GAAlleleSet<float>[naset];
  for(int i=0; i<naset; i++)
    aset[i] = sa.set(i);

  initializer(DEFAULT_REAL_INITIALIZER);
  mutator(DEFAULT_REAL_MUTATOR);
  comparator(DEFAULT_REAL_COMPARATOR);
  crossover(DEFAULT_REAL_CROSSOVER);
}

template <> 
GA1DArrayAlleleGenome<float>::~GA1DArrayAlleleGenome(){
  delete [] aset;
}



#ifdef GALIB_USE_STREAMS
// The read specialization takes in each number and stuffs it into the array.
template <> int
GA1DArrayAlleleGenome<float>::read(STD_ISTREAM & is) {
  unsigned int i=0;
  float val;
  do{
    is >> val;
    if(!is.fail()) gene(i++, val);
  } while(!is.fail() && !is.eof() && i < nx);

  if(is.eof() && i < nx){
    GAErr(GA_LOC, className(), "read", gaErrUnexpectedEOF);
    is.clear(STD_IOS_BADBIT | is.rdstate());
    return 1;
  }
  return 0;
}

// No need to specialize the write method.
#endif







/* ----------------------------------------------------------------------------
   Operator specializations
---------------------------------------------------------------------------- */
// The Gaussian mutator picks a new value based on a Gaussian distribution
// around the current value.  We respect the bounds (if any).
//*** need to figure out a way to make the stdev other than 1.0 
int 
GARealGaussianMutator(GAGenome& g, float pmut){
  GA1DArrayAlleleGenome<float> &child=
    DYN_CAST(GA1DArrayAlleleGenome<float> &, g);
  register int n, i;
  if(pmut <= 0.0) return(0);

  float nMut = pmut * (float)(child.length());
  int length = child.length()-1;
  if(nMut < 1.0){		// we have to do a flip test on each element
    nMut = 0;
    for(i=length; i>=0; i--){
      float value = child.gene(i);
      if(GAFlipCoin(pmut)){
	if(child.alleleset(i).type() == GAAllele::ENUMERATED ||
	   child.alleleset(i).type() == GAAllele::DISCRETIZED)
	  value = child.alleleset(i).allele();
	else if(child.alleleset(i).type() == GAAllele::BOUNDED){
	  value += GAUnitGaussian();
	  value = GAMax(child.alleleset(i).lower(), value);
	  value = GAMin(child.alleleset(i).upper(), value);
	}
	child.gene(i, value);
	nMut++;
      }
    }
  }
  else{				// only mutate the ones we need to
    for(n=0; n<nMut; n++){
      int idx = GARandomInt(0,length);
      float value = child.gene(idx);
      if(child.alleleset(idx).type() == GAAllele::ENUMERATED ||
	 child.alleleset(idx).type() == GAAllele::DISCRETIZED)
	value = child.alleleset(idx).allele();
      else if(child.alleleset(idx).type() == GAAllele::BOUNDED){
	value += GAUnitGaussian();
	value = GAMax(child.alleleset(idx).lower(), value);
	value = GAMin(child.alleleset(idx).upper(), value);
      }
      child.gene(idx, value);
    }
  }
  return((int)nMut);
}


// Arithmetic crossover generates a new value that is the average of the parent
// values.  Note that this means both children in a sexual crossover will be
// identical.  If parents are not the same length, the extra elements are not
// set!  You might want to add some noise to this so that both children are not
// the same...
int 
GARealArithmeticCrossover(const GAGenome& p1, const GAGenome& p2,
			  GAGenome* c1, GAGenome* c2) {
  const GA1DArrayGenome<float> &mom=
    DYN_CAST(const GA1DArrayGenome<float> &, p1);
  const GA1DArrayGenome<float> &dad=
    DYN_CAST(const GA1DArrayGenome<float> &, p2);

  int n=0;

  if(c1 && c2){
    GA1DArrayGenome<float> &sis=DYN_CAST(GA1DArrayGenome<float> &, *c1);
    GA1DArrayGenome<float> &bro=DYN_CAST(GA1DArrayGenome<float> &, *c2);

    int len = GAMax(mom.length(), dad.length());
    for(int i=0; i<len; i++) {
      sis.gene(i, 0.5 * (mom.gene(i) + dad.gene(i)));
      bro.gene(i, 0.5 * (mom.gene(i) + dad.gene(i)));
    }
    n = 2;
  }
  else if(c1 || c2){
    GA1DArrayGenome<float> &sis = (c1 ? 
				   DYN_CAST(GA1DArrayGenome<float> &, *c1) : 
				   DYN_CAST(GA1DArrayGenome<float> &, *c2));

    int len = GAMax(mom.length(), dad.length());
    for(int i=0; i<len; i++) {
      sis.gene(i, 0.5 * (mom.gene(i) + dad.gene(i)));
    }
    n = 1;
  }

  return n;
}


// Blend crossover generates a new value based on the interval between parents.
// We generate a uniform distribution based on the distance between parent
// values, then choose the child value based upon that distribution.
int 
GARealBlendCrossover(const GAGenome& p1, const GAGenome& p2,
		     GAGenome* c1, GAGenome* c2) {
  const GA1DArrayGenome<float> &mom=
    DYN_CAST(const GA1DArrayGenome<float> &, p1);
  const GA1DArrayGenome<float> &dad=
    DYN_CAST(const GA1DArrayGenome<float> &, p2);

  int n=0;

  if(c1 && c2){
    GA1DArrayGenome<float> &sis=DYN_CAST(GA1DArrayGenome<float> &, *c1);
    GA1DArrayGenome<float> &bro=DYN_CAST(GA1DArrayGenome<float> &, *c2);

    int len = GAMax(mom.length(), dad.length());
    for(int i=0; i<len; i++) {
      float dist = 0;
      if(mom.gene(i) > dad.gene(i)) 
	dist = mom.gene(i) - dad.gene(i);
      else 
	dist = dad.gene(i) - mom.gene(i);
      float lo = (GAMin(mom.gene(i), dad.gene(i))) - 0.5*dist;
      float hi = (GAMax(mom.gene(i), dad.gene(i))) + 0.5*dist;
      sis.gene(i, GARandomFloat(lo, hi));
      bro.gene(i, GARandomFloat(lo, hi));
    }
    n = 2;
  }
  else if(c1 || c2){
    GA1DArrayGenome<float> &sis = (c1 ?
				   DYN_CAST(GA1DArrayGenome<float> &, *c1) :
				   DYN_CAST(GA1DArrayGenome<float> &, *c2));

    int len = GAMax(mom.length(), dad.length());
    for(int i=0; i<len; i++) {
      float dist = 0;
      if(mom.gene(i) > dad.gene(i)) 
	dist = mom.gene(i) - dad.gene(i);
      else 
	dist = dad.gene(i) - mom.gene(i);
      float lo = (GAMin(mom.gene(i), dad.gene(i))) - 0.5*dist;
      float hi = (GAMax(mom.gene(i), dad.gene(i))) + 0.5*dist;
      sis.gene(i, GARandomFloat(lo, hi));
    }
    n = 1;
  }

  return n;
}





// force instantiations of this genome type.
//
// These must be included _after_ the specializations because some compilers
// get all wigged out about the declaration/specialization order.  Note that
// some compilers require a syntax different than others when forcing the 
// instantiation (i.e. GNU wants the 'template class', borland does not).
#ifndef GALIB_USE_AUTO_INST
#include <ga/GAAllele.C>
#include <ga/GA1DArrayGenome.C>

#if defined(__BORLANDC__)
#define GALIB_REALGENOME_TEMPLATE_PREFACE
#else
#define GALIB_REALGENOME_TEMPLATE_PREFACE template class
#endif

GALIB_REALGENOME_TEMPLATE_PREFACE GAAlleleSet<float>;
GALIB_REALGENOME_TEMPLATE_PREFACE GAAlleleSetCore<float>;
GALIB_REALGENOME_TEMPLATE_PREFACE GAAlleleSetArray<float>;

GALIB_REALGENOME_TEMPLATE_PREFACE GAArray<float>;
GALIB_REALGENOME_TEMPLATE_PREFACE GA1DArrayGenome<float>;
GALIB_REALGENOME_TEMPLATE_PREFACE GA1DArrayAlleleGenome<float>;

#endif