This file is indexed.

/usr/include/ga/GA1DArrayGenome.C is in libga-dev 1:2.4.7-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
// $Header$
/* ----------------------------------------------------------------------------
  array1.C
  mbwall 25feb95
  Copyright (c) 1995 Massachusetts Institute of Technology
                     all rights reserved

 DESCRIPTION:
  Source file for the 1D array genome.
---------------------------------------------------------------------------- */
#ifndef _ga_array1_C_
#define _ga_array1_C_

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ga/garandom.h>
#include <ga/GA1DArrayGenome.h>
#include <ga/GAMask.h>

template <class T> int 
GA1DArrayIsHole(const GA1DArrayGenome<T>&, const GA1DArrayGenome<T>&,
		int, int, int);


/* ----------------------------------------------------------------------------
1DArrayGenome
---------------------------------------------------------------------------- */
template <class T> const char *
GA1DArrayGenome<T>::className() const {return "GA1DArrayGenome";}
template <class T> int
GA1DArrayGenome<T>::classID() const {return GAID::ArrayGenome;}

// Set all the initial values to NULL or zero, then allocate the space we'll
// need (using the resize method).  We do NOT call the initialize method at
// this point - initialization must be done explicitly by the user of the
// genome (eg when the population is created or reset).  If we called the
// initializer routine here then we could end up with multiple initializations
// and/or calls to dummy initializers (for example when the genome is 
// created with a dummy initializer and the initializer is assigned later on).
// Besides, we default to the no-initialization initializer by calling the
// default genome constructor.
template <class T> 
GA1DArrayGenome<T>::
GA1DArrayGenome(unsigned int length, GAGenome::Evaluator f, void * u) :
GAArray<T>(length),
GAGenome(DEFAULT_1DARRAY_INITIALIZER, 
	 DEFAULT_1DARRAY_MUTATOR,
	 DEFAULT_1DARRAY_COMPARATOR) {
  evaluator(f);
  userData(u);
  nx=minX=maxX=length;
  crossover(DEFAULT_1DARRAY_CROSSOVER);
}


// This is the copy initializer.  We set everything to the default values, then
// copy the original.  The Array creator takes care of zeroing the data.
template <class T> 
GA1DArrayGenome<T>::
GA1DArrayGenome(const GA1DArrayGenome<T> & orig) : 
GAArray<T>(orig.sz), GAGenome() {
  GA1DArrayGenome<T>::copy(orig);
}


// Delete whatever we own.
template <class T>
GA1DArrayGenome<T>::~GA1DArrayGenome() { }


// This is the class-specific copy method.  It will get called by the super
// class since the superclass operator= is set up to call ccopy (and that is
// what we define here - a virtual function).  We should check to be sure that
// both genomes are the same class and same dimension.  This function tries
// to be smart about they way it copies.  If we already have data, then we do
// a memcpy of the one we're supposed to copy.  If we don't or we're not the 
// same size as the one we're supposed to copy, then we adjust ourselves.
//   The Array takes care of the resize in its copy method.
template <class T> void
GA1DArrayGenome<T>::copy(const GAGenome & orig){
  if(&orig == this) return;
  const GA1DArrayGenome<T>* c = DYN_CAST(const GA1DArrayGenome<T>*, &orig);
  if(c) {
    GAGenome::copy(*c);
    GAArray<T>::copy(*c);
    nx = c->nx; minX = c->minX; maxX = c->maxX;
  }
}


template <class T> GAGenome *
GA1DArrayGenome<T>::clone(GAGenome::CloneMethod flag) const {
  GA1DArrayGenome<T> *cpy = new GA1DArrayGenome<T>(nx);
  if(flag == CONTENTS){ 
    cpy->copy(*this);
  }
  else{
    cpy->GAGenome::copy(*this);
    cpy->maxX = maxX; cpy->minX = minX;
  }
  return cpy;
}


//   Resize the genome.
//   A negative value for the length means that we should randomly set the
// length of the genome (if the resize behaviour is resizeable).  If
// someone tries to randomly set the length and the resize behaviour is fixed
// length, then we don't do anything.
//   We pay attention to the values of minX and maxX - they determine what kind
// of resizing we are allowed to do.  If a resize is requested with a length
// less than the min length specified by the behaviour, we set the minimum 
// to the length.  If the length is longer than the max length specified by
// the behaviour, we set the max value to the length.
//   We return the total size (in bits) of the genome after resize. 
//   We don't do anything to the new contents!
template <class T> int
GA1DArrayGenome<T>::resize(int len)
{
  if(len == STA_CAST(int,nx)) return nx;

  if(len == GAGenome::ANY_SIZE)
    len = GARandomInt(minX, maxX);
  else if(len < 0)
    return nx;			// do nothing
  else if(minX == maxX)
    minX=maxX=len;
  else{
    if(len < STA_CAST(int,minX)) len=minX;
    if(len > STA_CAST(int,maxX)) len=maxX;
  }

  nx = GAArray<T>::size(len);
  _evaluated = gaFalse;
  return this->sz;
}


#ifdef GALIB_USE_STREAMS
// We don't define this one apriori.  Do it in a specialization.
template <class T> int
GA1DArrayGenome<T>::read(STD_ISTREAM &) {
  GAErr(GA_LOC, className(), "read", gaErrOpUndef);
  return 1;
}


// When we write the data to a stream we do it with spaces between elements.
// Also, there is no newline at the end of the stream of digits.
template <class T> int
GA1DArrayGenome<T>::write(STD_OSTREAM & os) const {
  for(unsigned int i=0; i<nx; i++)
    os << gene(i) << " ";
  return 0;
}
#endif


//   Set the resize behaviour of the genome.  A genome can be fixed
// length, resizeable with a max and min limit, or resizeable with no limits
// (other than an implicit one that we use internally).
//   A value of 0 means no resize, a value less than zero mean unlimited 
// resize, and a positive value means resize with that value as the limit.
template <class T> int
GA1DArrayGenome<T>::
resizeBehaviour(unsigned int lower, unsigned int upper)
{
  if(upper < lower){
    GAErr(GA_LOC, className(), "resizeBehaviour", gaErrBadResizeBehaviour);
    return resizeBehaviour();
  }
  minX = lower; maxX = upper;
  if(nx > upper) GA1DArrayGenome<T>::resize(upper);
  if(nx < lower) GA1DArrayGenome<T>::resize(lower);
  return resizeBehaviour();
}

template <class T> int
GA1DArrayGenome<T>::resizeBehaviour() const {
  int val = maxX;
  if(maxX == minX) val = FIXED_SIZE;
  return val;
}

template <class T> int 
GA1DArrayGenome<T>::equal(const GAGenome & c) const {
  const GA1DArrayGenome<T> & b = DYN_CAST(const GA1DArrayGenome<T> &, c);
  return((this == &c) ? 1 : ((nx != b.nx) ? 0 : GAArray<T>::equal(b,0,0,nx)));
}









/* ----------------------------------------------------------------------------
1DArrayAlleleGenome

  These genomes contain an allele set.  When we create a new genome, it owns
its own, independent allele set.  If we clone a new genome, the new one gets a
link to our allele set (so we don't end up with zillions of allele sets).  Same
is true for the copy constructor.
  The array may have a single allele set or an array of allele sets, depending
on which creator was called.  Either way, the allele set cannot be changed 
once the array is created.
---------------------------------------------------------------------------- */
template <class T> const char *
GA1DArrayAlleleGenome<T>::className() const {return "GA1DArrayAlleleGenome";}
template <class T> int
GA1DArrayAlleleGenome<T>::classID() const {return GAID::ArrayAlleleGenome;}

template <class T> 
GA1DArrayAlleleGenome<T>::
GA1DArrayAlleleGenome(unsigned int length, const GAAlleleSet<T> & s,
		      GAGenome::Evaluator f, void * u) :
GA1DArrayGenome<T>(length, f, u){
  naset = 1;
  aset = new GAAlleleSet<T>[1];
  aset[0] = s;

  this->initializer(GA1DArrayAlleleGenome<T>::DEFAULT_1DARRAY_ALLELE_INITIALIZER);
  this->mutator(GA1DArrayAlleleGenome<T>::DEFAULT_1DARRAY_ALLELE_MUTATOR);
  this->comparator(GA1DArrayAlleleGenome<T>::DEFAULT_1DARRAY_ALLELE_COMPARATOR);
  this->crossover(GA1DArrayAlleleGenome<T>::DEFAULT_1DARRAY_ALLELE_CROSSOVER);
}

template <class T> 
GA1DArrayAlleleGenome<T>::
GA1DArrayAlleleGenome(const GAAlleleSetArray<T> & sa,
		      GAGenome::Evaluator f, void * u) :
GA1DArrayGenome<T>(sa.size(), f, u) {
  naset = sa.size();
  aset = new GAAlleleSet<T>[naset];
  for(int i=0; i<naset; i++)
    aset[i] = sa.set(i);

  this->initializer(GA1DArrayAlleleGenome<T>::DEFAULT_1DARRAY_ALLELE_INITIALIZER);
  this->mutator(GA1DArrayAlleleGenome<T>::DEFAULT_1DARRAY_ALLELE_MUTATOR);
  this->comparator(GA1DArrayAlleleGenome<T>::DEFAULT_1DARRAY_ALLELE_COMPARATOR);
  this->crossover(GA1DArrayAlleleGenome<T>::DEFAULT_1DARRAY_ALLELE_CROSSOVER);
}


// The copy constructor creates a new genome whose allele set refers to the
// original's allele set.
template <class T> 
GA1DArrayAlleleGenome<T>::
GA1DArrayAlleleGenome(const GA1DArrayAlleleGenome<T>& orig) : 
GA1DArrayGenome<T>(orig.sz) {
  naset = 0;
  aset = (GAAlleleSet<T>*)0;
  GA1DArrayAlleleGenome<T>::copy(orig);
}


// Delete the allele set
template <class T>
GA1DArrayAlleleGenome<T>::~GA1DArrayAlleleGenome(){
  delete [] aset;
}


// This implementation of clone does not make use of the contents/attributes
// capability because this whole interface isn't quite right yet...  Just 
// clone the entire thing, contents and all.
template <class T> GAGenome *
GA1DArrayAlleleGenome<T>::clone(GAGenome::CloneMethod) const {
  return new GA1DArrayAlleleGenome<T>(*this);
}


template <class T> void 
GA1DArrayAlleleGenome<T>::copy(const GAGenome& orig){
  if(&orig == this) return;
  const GA1DArrayAlleleGenome<T> * c = 
    DYN_CAST(const GA1DArrayAlleleGenome<T>*, &orig);
  if(c) {
    GA1DArrayGenome<T>::copy(*c);
    if(naset != c->naset){
      delete [] aset;
      naset = c->naset;
      aset = new GAAlleleSet<T>[naset];
    }
    for(int i=0; i<naset; i++)
      aset[i].link(c->aset[i]);
  }
}


// If we resize to a larger length then we need to set the contents to a valid
// value (ie one of our alleles).
template <class T> int
GA1DArrayAlleleGenome<T>::resize(int len){
  unsigned int oldx = this->nx;
  GA1DArrayGenome<T>::resize(len);
  if(this->nx > oldx){
    for(unsigned int i=oldx; i<this->nx; i++)
      this->a[i] = aset[i % naset].allele();
  }
  return len;
}



// Define these so they can easily be specialized as needed.
#ifdef GALIB_USE_STREAMS
template <class T> int
GA1DArrayAlleleGenome<T>::read(STD_ISTREAM& is){
  return GA1DArrayGenome<T>::read(is);
}

template <class T> int
GA1DArrayAlleleGenome<T>::write(STD_OSTREAM& os) const {
  return GA1DArrayGenome<T>::write(os);
}
#endif

template <class T> int
GA1DArrayAlleleGenome<T>::equal(const GAGenome & c) const {
  return GA1DArrayGenome<T>::equal(c);
}











/* ----------------------------------------------------------------------------
   Operator definitions
---------------------------------------------------------------------------- */
// The random initializer sets the elements of the array based on the alleles
// set.  We choose randomly the allele for each element.
template <class ARRAY_TYPE> void 
GA1DArrayAlleleGenome<ARRAY_TYPE>::UniformInitializer(GAGenome & c)
{
  GA1DArrayAlleleGenome<ARRAY_TYPE> &child=
    DYN_CAST(GA1DArrayAlleleGenome<ARRAY_TYPE> &, c);
  child.resize(GAGenome::ANY_SIZE); // let chrom resize if it can
  for(int i=child.length()-1; i>=0; i--)
    child.gene(i, child.alleleset(i).allele());
}


// Random initializer for order-based genome.  Loop through the genome
// and assign each element the next allele in the allele set.  Once each
// element has been initialized, scramble the contents by swapping elements.
// This assumes that there is only one allele set for the array.
template <class ARRAY_TYPE> void 
GA1DArrayAlleleGenome<ARRAY_TYPE>::OrderedInitializer(GAGenome & c)
{
  GA1DArrayAlleleGenome<ARRAY_TYPE> &child=
    DYN_CAST(GA1DArrayAlleleGenome<ARRAY_TYPE> &, c);
  child.resize(GAGenome::ANY_SIZE); // let chrom resize if it can
  int length = child.length()-1;
  int n=0;
  int i;
  for(i=length; i>=0; i--){
    child.gene(i, child.alleleset().allele(n++));
    if(n >= child.alleleset().size()) n = 0;
  }
  for(i=length; i>=0; i--)
    child.swap(i, GARandomInt(0, length));
}


// Randomly pick elements in the array then set the element to any of the 
// alleles in the allele set for this genome.  This will work for any number
// of allele sets for a given array.
template <class ARRAY_TYPE> int 
GA1DArrayAlleleGenome<ARRAY_TYPE>::FlipMutator(GAGenome & c, float pmut)
{
  GA1DArrayAlleleGenome<ARRAY_TYPE> &child=
    DYN_CAST(GA1DArrayAlleleGenome<ARRAY_TYPE> &, c);
  register int n, i;
  if(pmut <= 0.0) return(0);

  float nMut = pmut * STA_CAST(float,child.length());
  if(nMut < 1.0){		// we have to do a flip test on each bit
    nMut = 0;
    for(i=child.length()-1; i>=0; i--){
      if(GAFlipCoin(pmut)){
	child.gene(i, child.alleleset(i).allele());
	nMut++;
      }
    }
  }
  else{				// only flip the number of bits we need to flip
    for(n=0; n<nMut; n++){
      i = GARandomInt(0, child.length()-1);
      child.gene(i, child.alleleset(i).allele());
    }
  }
  return(STA_CAST(int,nMut));
}


// Randomly swap elements in the array.
template <class ARRAY_TYPE> int 
GA1DArrayGenome<ARRAY_TYPE>::SwapMutator(GAGenome & c, float pmut)
{
  GA1DArrayGenome<ARRAY_TYPE> &child=DYN_CAST(GA1DArrayGenome<ARRAY_TYPE>&, c);
  register int n, i;
  if(pmut <= 0.0) return(0);

  float nMut = pmut * STA_CAST(float,child.length());
  int length = child.length()-1;
  if(nMut < 1.0){		// we have to do a flip test on each bit
    nMut = 0;
    for(i=length; i>=0; i--){
      if(GAFlipCoin(pmut)){
	child.swap(i, GARandomInt(0, length));
	nMut++;
      }
    }
  }
  else{				// only flip the number of bits we need to flip
    for(n=0; n<nMut; n++)
      child.swap(GARandomInt(0, length), GARandomInt(0, length));
  }
  return(STA_CAST(int,nMut));
}


// The comparator is supposed to return a number that indicates how similar
// two genomes are, so here we just compare elements and return a number that
// indicates how many elements match.  If they are different lengths then we
// return -1 to indicate that we could not calculate the differences.
//   This assumes that there is an operator == defined for the object in the
// elements of the array.
template <class ARRAY_TYPE> float
GA1DArrayGenome<ARRAY_TYPE>::
ElementComparator(const GAGenome& a, const GAGenome& b)
{
  const GA1DArrayGenome<ARRAY_TYPE>& sis=
    DYN_CAST(const GA1DArrayGenome<ARRAY_TYPE>&, a);
  const GA1DArrayGenome<ARRAY_TYPE>& bro=
    DYN_CAST(const GA1DArrayGenome<ARRAY_TYPE>&, b);

  if(sis.length() != bro.length()) return -1;
  if(sis.length() == 0) return 0;
  float count = 0.0;
  for(int i=sis.length()-1; i>=0; i--)
    count += ((sis.gene(i) == bro.gene(i)) ? 0 : 1);
  return count/sis.length();
}














#define SWAP(a,b) {unsigned int tmp=a; a=b; b=tmp;}

// Randomly take bits from each parent.  For each bit we flip a coin to see if
// that bit should come from the mother or the father.  If strings are 
// different lengths then we need to use the mask to get things right.
template <class T> int
GA1DArrayGenome<T>::
UniformCrossover(const GAGenome& p1, const GAGenome& p2,
		 GAGenome* c1, GAGenome* c2){
  const GA1DArrayGenome<T> &mom=DYN_CAST(const GA1DArrayGenome<T> &, p1);
  const GA1DArrayGenome<T> &dad=DYN_CAST(const GA1DArrayGenome<T> &, p2);

  int n=0;
  int i;

  if(c1 && c2){
    GA1DArrayGenome<T> &sis=DYN_CAST(GA1DArrayGenome<T> &, *c1);
    GA1DArrayGenome<T> &bro=DYN_CAST(GA1DArrayGenome<T> &, *c2);

    if(sis.length() == bro.length() &&
       mom.length() == dad.length() &&
       sis.length() == mom.length()){
      for(i=sis.length()-1; i>=0; i--){
	if(GARandomBit()){
	  sis.gene(i, mom.gene(i));
	  bro.gene(i, dad.gene(i));
	}
	else{
	  sis.gene(i, dad.gene(i));
	  bro.gene(i, mom.gene(i));
	}
      }
    }
    else{
      GAMask mask;
      int start;
      int max = (sis.length() > bro.length()) ? sis.length() : bro.length();
      int min = (mom.length() < dad.length()) ? mom.length() : dad.length();
      mask.size(max);
      for(i=0; i<max; i++)
	mask[i] = GARandomBit();
      start = (sis.length() < min) ? sis.length()-1 : min-1;
      for(i=start; i>=0; i--)
	sis.gene(i, (mask[i] ? mom.gene(i) : dad.gene(i)));
      start = (bro.length() < min) ? bro.length()-1 : min-1;
      for(i=start; i>=0; i--)
	bro.gene(i, (mask[i] ? dad.gene(i) : mom.gene(i)));
    }
    n = 2;
  }
  else if(c1 || c2){
    GA1DArrayGenome<T> &sis = (c1 ? 
			       DYN_CAST(GA1DArrayGenome<T> &, *c1) : 
			       DYN_CAST(GA1DArrayGenome<T> &, *c2));

    if(mom.length() == dad.length() && sis.length() == mom.length()){
      for(i=sis.length()-1; i>=0; i--)
	sis.gene(i, (GARandomBit() ? mom.gene(i) : dad.gene(i)));
    }
    else{
      int min = (mom.length() < dad.length()) ? mom.length() : dad.length();
      min = (sis.length() < min) ? sis.length() : min;
      for(i=min-1; i>=0; i--)
	sis.gene(i, (GARandomBit() ? mom.gene(i) : dad.gene(i)));
    }
    n = 1;
  }

  return n;
}





// Single point crossover for 1D array genomes.  Pick a single point then
// copy genetic material from each parent.  We must allow for resizable genomes
// so be sure to check the behaviours before we do the crossovers.  If resizing
// is allowed then the children will change depending on where the site is
// located.  It is also possible to have a mixture of resize behaviours, but
// we won't worry about that at this point.  If this happens we just say that
// we cannot handle that and post an error message.
template <class T> int
GA1DArrayGenome<T>::
OnePointCrossover(const GAGenome& p1, const GAGenome& p2, 
		  GAGenome* c1, GAGenome* c2){
  const GA1DArrayGenome<T> &mom=DYN_CAST(const GA1DArrayGenome<T> &, p1);
  const GA1DArrayGenome<T> &dad=DYN_CAST(const GA1DArrayGenome<T> &, p2);

  int nc=0;
  unsigned int momsite, momlen;
  unsigned int dadsite, dadlen;

  if(c1 && c2){
    GA1DArrayGenome<T> &sis=DYN_CAST(GA1DArrayGenome<T> &, *c1);
    GA1DArrayGenome<T> &bro=DYN_CAST(GA1DArrayGenome<T> &, *c2);

    if(sis.resizeBehaviour() == GAGenome::FIXED_SIZE &&
       bro.resizeBehaviour() == GAGenome::FIXED_SIZE){
      if(mom.length() != dad.length() || 
	 sis.length() != bro.length() ||
	 sis.length() != mom.length()){
	GAErr(GA_LOC, mom.className(), "one-point cross", gaErrSameLengthReqd);
	return nc;
      }
      momsite = dadsite = GARandomInt(0, mom.length());
      momlen = dadlen = mom.length() - momsite;
    }
    else if(sis.resizeBehaviour() == GAGenome::FIXED_SIZE ||
	    bro.resizeBehaviour() == GAGenome::FIXED_SIZE){
      GAErr(GA_LOC, mom.className(), "one-point cross", gaErrSameBehavReqd);
      return nc;
    }
    else{
      momsite = GARandomInt(0, mom.length());
      dadsite = GARandomInt(0, dad.length());
      momlen = mom.length() - momsite;
      dadlen = dad.length() - dadsite;
      sis.resize(momsite+dadlen);
      bro.resize(dadsite+momlen);
    }
    
    sis.copy(mom, 0, 0, momsite);
    sis.copy(dad, momsite, dadsite, dadlen);
    bro.copy(dad, 0, 0, dadsite);
    bro.copy(mom, dadsite, momsite, momlen);
  
    nc = 2;
  }
  else if(c1 || c2){
    GA1DArrayGenome<T> &sis = (c1 ? 
			       DYN_CAST(GA1DArrayGenome<T> &, *c1) : 
			       DYN_CAST(GA1DArrayGenome<T> &, *c2));

    if(sis.resizeBehaviour() == GAGenome::FIXED_SIZE){
      if(mom.length() != dad.length() || sis.length() != mom.length()){
	GAErr(GA_LOC, mom.className(), "one-point cross", gaErrSameLengthReqd);
	return nc;
      }
      momsite = dadsite = GARandomInt(0, mom.length());
      momlen = dadlen = mom.length() - momsite;
    }
    else{
      momsite = GARandomInt(0, mom.length());
      dadsite = GARandomInt(0, dad.length());
      momlen = mom.length() - momsite;
      dadlen = dad.length() - dadsite;
      sis.resize(momsite+dadlen);
    }
    
    if(GARandomBit()){
      sis.copy(mom, 0, 0, momsite);
      sis.copy(dad, momsite, dadsite, dadlen);
    }
    else{
      sis.copy(dad, 0, 0, dadsite);
      sis.copy(mom, dadsite, momsite, momlen);
    }

    nc = 1;
  }

  return nc;
}











// Two point crossover for the 1D array genome.  Similar to the single point
// crossover, but here we pick two points then grab the sections based upon 
// those two points.
//   When we pick the points, it doesn't matter where they fall (one is not
// dependent upon the other).  Make sure we get the lesser one into the first
// position of our site array.
template <class T> int
GA1DArrayGenome<T>::
TwoPointCrossover(const GAGenome& p1, const GAGenome& p2, 
		  GAGenome* c1, GAGenome* c2){
  const GA1DArrayGenome<T> &mom=DYN_CAST(const GA1DArrayGenome<T> &, p1);
  const GA1DArrayGenome<T> &dad=DYN_CAST(const GA1DArrayGenome<T> &, p2);

  int nc=0;
  unsigned int momsite[2], momlen[2];
  unsigned int dadsite[2], dadlen[2];

  if(c1 && c2){
    GA1DArrayGenome<T> &sis=DYN_CAST(GA1DArrayGenome<T> &, *c1);
    GA1DArrayGenome<T> &bro=DYN_CAST(GA1DArrayGenome<T> &, *c2);

    if(sis.resizeBehaviour() == GAGenome::FIXED_SIZE &&
       bro.resizeBehaviour() == GAGenome::FIXED_SIZE){
      if(mom.length() != dad.length() || 
	 sis.length() != bro.length() ||
	 sis.length() != mom.length()){
	GAErr(GA_LOC, mom.className(), "two-point cross", gaErrSameLengthReqd);
	return nc;
      }
      momsite[0] = GARandomInt(0, mom.length());
      momsite[1] = GARandomInt(0, mom.length());
      if(momsite[0] > momsite[1]) SWAP(momsite[0], momsite[1]);
      momlen[0] = momsite[1] - momsite[0];
      momlen[1] = mom.length() - momsite[1];
      
      dadsite[0] = momsite[0];
      dadsite[1] = momsite[1];
      dadlen[0] = momlen[0];
      dadlen[1] = momlen[1];
    }
    else if(sis.resizeBehaviour() == GAGenome::FIXED_SIZE ||
	    bro.resizeBehaviour() == GAGenome::FIXED_SIZE){
      return nc;
    }
    else{
      momsite[0] = GARandomInt(0, mom.length());
      momsite[1] = GARandomInt(0, mom.length());
      if(momsite[0] > momsite[1]) SWAP(momsite[0], momsite[1]);
      momlen[0] = momsite[1] - momsite[0];
      momlen[1] = mom.length() - momsite[1];
      
      dadsite[0] = GARandomInt(0, dad.length());
      dadsite[1] = GARandomInt(0, dad.length());
      if(dadsite[0] > dadsite[1]) SWAP(dadsite[0], dadsite[1]);
      dadlen[0] = dadsite[1] - dadsite[0];
      dadlen[1] = dad.length() - dadsite[1];
      
      sis.resize(momsite[0]+dadlen[0]+momlen[1]);
      bro.resize(dadsite[0]+momlen[0]+dadlen[1]);
    }

    sis.copy(mom, 0, 0, momsite[0]);
    sis.copy(dad, momsite[0], dadsite[0], dadlen[0]);
    sis.copy(mom, momsite[0]+dadlen[0], momsite[1], momlen[1]);
    bro.copy(dad, 0, 0, dadsite[0]);
    bro.copy(mom, dadsite[0], momsite[0], momlen[0]);
    bro.copy(dad, dadsite[0]+momlen[0], dadsite[1], dadlen[1]);

    nc = 2;
  }
  else if(c1 || c2){
    GA1DArrayGenome<T> &sis = (c1 ?
			       DYN_CAST(GA1DArrayGenome<T> &, *c1) :
			       DYN_CAST(GA1DArrayGenome<T> &, *c2));

    if(sis.resizeBehaviour() == GAGenome::FIXED_SIZE){
      if(mom.length() != dad.length() || sis.length() != mom.length()){
	GAErr(GA_LOC, mom.className(), "two-point cross", gaErrSameLengthReqd);
	return nc;
      }
      momsite[0] = GARandomInt(0, mom.length());
      momsite[1] = GARandomInt(0, mom.length());
      if(momsite[0] > momsite[1]) SWAP(momsite[0], momsite[1]);
      momlen[0] = momsite[1] - momsite[0];
      momlen[1] = mom.length() - momsite[1];
      
      dadsite[0] = momsite[0];
      dadsite[1] = momsite[1];
      dadlen[0] = momlen[0];
      dadlen[1] = momlen[1];
    }
    else{
      momsite[0] = GARandomInt(0, mom.length());
      momsite[1] = GARandomInt(0, mom.length());
      if(momsite[0] > momsite[1]) SWAP(momsite[0], momsite[1]);
      momlen[0] = momsite[1] - momsite[0];
      momlen[1] = mom.length() - momsite[1];
      
      dadsite[0] = GARandomInt(0, dad.length());
      dadsite[1] = GARandomInt(0, dad.length());
      if(dadsite[0] > dadsite[1]) SWAP(dadsite[0], dadsite[1]);
      dadlen[0] = dadsite[1] - dadsite[0];
      dadlen[1] = dad.length() - dadsite[1];

      sis.resize(momsite[0]+dadlen[0]+momlen[1]);
    }

    if(GARandomBit()){
      sis.copy(mom, 0, 0, momsite[0]);
      sis.copy(dad, momsite[0], dadsite[0], dadlen[0]);
      sis.copy(mom, momsite[0]+dadlen[0], momsite[1], momlen[1]);
    }
    else{
      sis.copy(dad, 0, 0, dadsite[0]);
      sis.copy(mom, dadsite[0], momsite[0], momlen[0]);
      sis.copy(dad, dadsite[0]+momlen[0], dadsite[1], dadlen[1]);
    }

    nc = 1;
  }

  return nc;
}







// Even and odd crossover for the array works just like it does for the 
// binary strings.  For even crossover we take the 0th element and every other
// one after that from the mother.  The 1st and every other come from the
// father.  For odd crossover, we do just the opposite.
template <class T> int
GA1DArrayGenome<T>::
EvenOddCrossover(const GAGenome& p1, const GAGenome& p2, 
		 GAGenome* c1, GAGenome* c2){
  const GA1DArrayGenome<T> &mom=DYN_CAST(const GA1DArrayGenome<T> &, p1);
  const GA1DArrayGenome<T> &dad=DYN_CAST(const GA1DArrayGenome<T> &, p2);

  int nc=0;
  int i;

  if(c1 && c2){
    GA1DArrayGenome<T> &sis=DYN_CAST(GA1DArrayGenome<T> &, *c1);
    GA1DArrayGenome<T> &bro=DYN_CAST(GA1DArrayGenome<T> &, *c2);
    if(sis.length() == bro.length() &&
       mom.length() == dad.length() &&
       sis.length() == mom.length()){
      for(i=sis.length()-1; i>=1; i-=2){
	sis.gene(i, mom.gene(i));
	bro.gene(i, dad.gene(i));
	sis.gene(i-1, dad.gene(i-1));
	bro.gene(i-1, mom.gene(i-1));
      }
      if(i==0){
	sis.gene(0, mom.gene(0));
	bro.gene(0, dad.gene(0));
      }
    }
    else{
      int start;
      int min = (mom.length() < dad.length()) ? mom.length() : dad.length();
      start = (sis.length() < min) ? sis.length()-1 : min-1;
      for(i=start; i>=0; i--)
	sis.gene(i, ((i%2 == 0) ? mom.gene(i) : dad.gene(i)));
      start = (bro.length() < min) ? bro.length()-1 : min-1;
      for(i=start; i>=0; i--)
	bro.gene(i, ((i%2 == 0) ? dad.gene(i) : mom.gene(i)));
    }

    nc = 2;
  }
  else if(c1 || c2){
    GA1DArrayGenome<T> &sis = (c1 ? 
			       DYN_CAST(GA1DArrayGenome<T> &, *c1) : 
			       DYN_CAST(GA1DArrayGenome<T> &, *c2));
    
    if(mom.length() == dad.length() && sis.length() == mom.length()){
      for(i=sis.length()-1; i>=1; i-=2){
	sis.gene(i, mom.gene(i));
	sis.gene(i-1, dad.gene(i-1));
      }
      if(i==0){
	sis.gene(0, mom.gene(0));
      }
    }
    else{
      int min = (mom.length() < dad.length()) ? mom.length() : dad.length();
      min = (sis.length() < min) ? sis.length()-1 : min-1;
      for(i=min; i>=0; i--)
	sis.gene(i, ((i%2 == 0) ? mom.gene(i) : dad.gene(i)));
    }

    nc = 1;
  }

  return nc;
}





// Partial match crossover for the 1D array genome.  This uses the partial
// matching algorithm described in Goldberg's book.
//   Parents and children must be the same size for this crossover to work.  If
// they are not, we post an error message.
//   We make sure that b will be greater than a.
template <class T> int
GA1DArrayGenome<T>::
PartialMatchCrossover(const GAGenome& p1, const GAGenome& p2, 
		      GAGenome* c1, GAGenome* c2){
  const GA1DArrayGenome<T> &mom=DYN_CAST(const GA1DArrayGenome<T> &, p1);
  const GA1DArrayGenome<T> &dad=DYN_CAST(const GA1DArrayGenome<T> &, p2);

  int nc=0;
  int a = GARandomInt(0, mom.length());
  int b = GARandomInt(0, dad.length());
  if(b < a) SWAP(a,b);
  int i,j,index;

  if(mom.length() != dad.length()){
    GAErr(GA_LOC, mom.className(), "parial match cross", gaErrBadParentLength);
    return nc;
  }
  
  if(c1 && c2){
    GA1DArrayGenome<T> &sis=DYN_CAST(GA1DArrayGenome<T> &, *c1);
    GA1DArrayGenome<T> &bro=DYN_CAST(GA1DArrayGenome<T> &, *c2);

    sis.GAArray<T>::copy(mom);
    for(i=a, index=a; i<b; i++, index++){
      for(j=0; j<sis.length()-1 && sis.gene(j) != dad.gene(index); j++);
      sis.swap(i,j);
    }
    bro.GAArray<T>::copy(dad);
    for(i=a, index=a; i<b; i++, index++){
      for(j=0; j<bro.length()-1 && bro.gene(j) != mom.gene(index); j++);
      bro.swap(i,j);
    }

    nc = 2;
  }
  else if(c1 || c2){
    GA1DArrayGenome<T> &sis = (c1 ? 
			       DYN_CAST(GA1DArrayGenome<T> &, *c1) : 
			       DYN_CAST(GA1DArrayGenome<T> &, *c2));

    const GA1DArrayGenome<T> *parent1, *parent2;
    if(GARandomBit()) { parent1 = &mom; parent2 = &dad; }
    else              { parent1 = &dad; parent2 = &mom; }

    sis.GAArray<T>::copy(*parent1);
    for(i=a, index=a; i<b; i++, index++){
      for(j=0; j<sis.length()-1 && sis.gene(j) != parent2->gene(index); j++);
      sis.swap(i,j);
    }

    nc = 1;
  }

  return nc;
}





// This function determines whether or not an indexed position is a hole that
// we can substitute into.  It does a linear search to find the holes (yuk).
template <class T> int
GA1DArrayIsHole(const GA1DArrayGenome<T> &c, const GA1DArrayGenome<T> &dad,
		int index, int a, int b){
  for(int i=a; i<b; i++)
    if(c.gene(index) == dad.gene(i)) return 1;
  return 0;
}


// Order crossover for the 1D array genome.  This uses the order crossover
// described in Goldberg's book.
//   Parents and children must be the same length.
//   We make sure that b will be greater than a.
//   This implementation isn't terribly smart.  For example, I do a linear
// search rather than caching and doing binary search or smarter hash tables.
//   First we copy the mother into the sister.  Then move the 'holes' into the
// crossover section and maintain the ordering of the non-hole elements.  
// Finally, put the 'holes' in the proper order within the crossover section.
// After we have done the sister, we do the brother.
template <class T> int
GA1DArrayGenome<T>::
OrderCrossover(const GAGenome& p1, const GAGenome& p2,
	       GAGenome* c1, GAGenome* c2){
  const GA1DArrayGenome<T> &mom=DYN_CAST(const GA1DArrayGenome<T> &, p1);
  const GA1DArrayGenome<T> &dad=DYN_CAST(const GA1DArrayGenome<T> &, p2);

  int nc=0;
  int a = GARandomInt(0, mom.length());
  int b = GARandomInt(0, mom.length());
  if(b < a) SWAP(a,b);
  int i,j, index;

  if(mom.length() != dad.length()){
    GAErr(GA_LOC, mom.className(), "order cross", gaErrBadParentLength);
    return nc;
  }
  
  if(c1 && c2){
    GA1DArrayGenome<T> &sis=DYN_CAST(GA1DArrayGenome<T> &, *c1);
    GA1DArrayGenome<T> &bro=DYN_CAST(GA1DArrayGenome<T> &, *c2);

// Copy the parent
    sis.GAArray<T>::copy(mom);

// Move all the 'holes' into the crossover section
    for(i=0, index=b; i<sis.size(); i++, index++){
      if(index >= sis.size()) index=0;
      if(GA1DArrayIsHole(sis,dad,index,a,b)) break;
    }
    
    for(; i<sis.size()-b+a; i++, index++){
      if(index >= sis.size()) index=0;
      j=index;
      do{
	j++;
	if(j >= sis.size()) j=0;
      } while(GA1DArrayIsHole(sis,dad,j,a,b));
      sis.swap(index,j);
    }

// Now put the 'holes' in the proper order within the crossover section.
    for(i=a; i<b; i++){
      if(sis.gene(i) != dad.gene(i)){
	for(j=i+1; j<b; j++)
	  if(sis.gene(j) == dad.gene(i)) sis.swap(i,j);
      }
    }

// Now do the other child
    bro.GAArray<T>::copy(dad);

// Move all the 'holes' into the crossover section
    for(i=0, index=b; i<bro.size(); i++, index++){
      if(index >= bro.size()) index=0;
      if(GA1DArrayIsHole(bro,mom,index,a,b)) break;
    }

    for(; i<bro.size()-b+a; i++, index++){
      if(index >= bro.size()) index=0;
      j=index;
      do{
	j++;
	if(j >= bro.size()) j=0;
      } while(GA1DArrayIsHole(bro,mom,j,a,b));
      bro.swap(index,j);
    }
    
// Now put the 'holes' in the proper order within the crossover section.
    for(i=a; i<b; i++){
      if(bro.gene(i) != mom.gene(i)){
	for(j=i+1; j<b; j++)
	  if(bro.gene(j) == mom.gene(i)) bro.swap(i,j);
      }
    }

    nc = 2;
  }
  else if(c1 || c2){
    GA1DArrayGenome<T> &sis = (c1 ? 
			       DYN_CAST(GA1DArrayGenome<T> &, *c1) : 
			       DYN_CAST(GA1DArrayGenome<T> &, *c2));

    const GA1DArrayGenome<T> *parent1, *parent2;
    if(GARandomBit()) { parent1 = &mom; parent2 = &dad; }
    else              { parent1 = &dad; parent2 = &mom; }

    sis.GAArray<T>::copy(*parent1);
    for(i=0, index=b; i<sis.size(); i++, index++){
      if(index >= sis.size()) index=0;
      if(GA1DArrayIsHole(sis,*parent2,index,a,b)) break;
    }
    for(; i<sis.size()-b+a; i++, index++){
      if(index >= sis.size()) index=0;
      j=index;
      do{
	j++;
	if(j >= sis.size()) j=0;
      } while(GA1DArrayIsHole(sis,*parent2,j,a,b));
      sis.swap(index,j);
    }
    for(i=a; i<b; i++){
      if(sis.gene(i) != parent2->gene(i)){
	for(j=i+1; j<b; j++)
	  if(sis.gene(j) == parent2->gene(i)) sis.swap(i,j);
      }
    }

    nc = 1;
  }

  return nc;
}








// Cycle crossover for the 1D array genome.  This is implemented as described 
// in goldberg's book.  The first is picked from mom, then cycle using dad.
// Finally, fill in the gaps with the elements from dad.
//   We allocate space for a temporary array in this routine.  It never frees
// the memory that it uses, so you might want to re-think this if you're really
// memory-constrained (similar to what we do with the uniform crossover when
// the children are resizeable).
//  Allocate space for an array of flags.  We use this to keep track of whether
// the child's contents came from the mother or the father.  We don't free the
// space here, but it is not a memory leak.
//   The first step is to cycle through mom & dad to get the cyclic part of 
// the crossover.  Then fill in the rest of the sis with dad's contents that 
// we didn't use in the cycle.  Finally, do the same thing for the other child.
//   Notice that this implementation makes serious use of the operator= for the
// objects in the array.  It also requires the operator != and == comparators.
template <class T> int
GA1DArrayGenome<T>::
CycleCrossover(const GAGenome& p1, const GAGenome& p2,
	       GAGenome* c1, GAGenome* c2){
  const GA1DArrayGenome<T> &mom=DYN_CAST(const GA1DArrayGenome<T> &, p1);
  const GA1DArrayGenome<T> &dad=DYN_CAST(const GA1DArrayGenome<T> &, p2);

  int nc=0;
  int i, current=0;

  if(mom.length() != dad.length()){
    GAErr(GA_LOC, mom.className(), "cycle cross", gaErrBadParentLength);
    return nc;
  }

  if(c1 && c2){
    GAMask mask;
    GA1DArrayGenome<T> &sis=DYN_CAST(GA1DArrayGenome<T> &, *c1);
    GA1DArrayGenome<T> &bro=DYN_CAST(GA1DArrayGenome<T> &, *c2);

    mask.size(sis.length());
    mask.clear();

    sis.gene(0, mom.gene(0));
    mask[0] = 1;
    while(dad.gene(current) != mom.gene(0)){
      for(i=0; i<sis.size(); i++){
	if(mom.gene(i) == dad.gene(current)){
	  sis.gene(i, mom.gene(i));
	  mask[i] = 1;
	  current = i;
	  break;
	}
      }
    }

    for(i=0; i<sis.size(); i++)
      if(mask[i] == 0) sis.gene(i, dad.gene(i));

    mask.clear();

    bro.gene(0, dad.gene(0));
    mask[0] = 1;
    while(mom.gene(current) != dad.gene(0)){
      for(i=0; i<bro.size(); i++){
	if(dad.gene(i) == mom.gene(current)){
	  bro.gene(i, dad.gene(i));
	  mask[i] = 1;
	  current = i;
	  break;
	}
      }
    }

    for(i=0; i<bro.size(); i++)
      if(mask[i] == 0) bro.gene(i, mom.gene(i));

    nc = 2;
  }
  else if(c1 || c2){
    GA1DArrayGenome<T> &sis = (c1 ?
			       DYN_CAST(GA1DArrayGenome<T> &, *c1) :
			       DYN_CAST(GA1DArrayGenome<T> &, *c2));

    const GA1DArrayGenome<T> *parent1, *parent2;
    if(GARandomBit()) { parent1 = &mom; parent2 = &dad; }
    else              { parent1 = &dad; parent2 = &mom; }

    GAMask mask;
    mask.size(sis.length());
    mask.clear();
    
    sis.gene(0, parent1->gene(0));
    mask[0] = 1;
    while(parent2->gene(current) != parent1->gene(0)){
      for(i=0; i<sis.size(); i++){
	if(parent1->gene(i) == parent2->gene(current)){
	  sis.gene(i, parent1->gene(i));
	  mask[i] = 1;
	  current = i;
	  break;
	}
      }
    }
    for(i=0; i<sis.size(); i++)
      if(mask[i] == 0) sis.gene(i, parent2->gene(i));

    nc = 1;
  }

  return nc;
}

#undef SWAP

#endif