This file is indexed.

/usr/include/fst/dfs-visit.h is in libfst-dev 1.5.3+r3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Depth-first search visitation. See visit.h for more general search queue
// disciplines.

#ifndef FST_LIB_DFS_VISIT_H_
#define FST_LIB_DFS_VISIT_H_

#include <stack>
#include <vector>

#include <fst/arcfilter.h>
#include <fst/fst.h>


namespace fst {

// Visitor Interface - class determines actions taken during a Dfs.
// If any of the boolean member functions return false, the DFS is
// aborted by first calling FinishState() on all currently grey states
// and then calling FinishVisit().
//
// Note this is similar to the more general visitor interface in visit.h
// except that FinishState returns additional information appropriate only for
// a DFS and some methods names here are better suited to a DFS.
//
// template <class Arc>
// class Visitor {
//  public:
//   typedef typename Arc::StateId StateId;
//
//   Visitor(T *return_data);
//   // Invoked before DFS visit
//   void InitVisit(const Fst<Arc> &fst);
//   // Invoked when state discovered (2nd arg is DFS tree root)
//   bool InitState(StateId s, StateId root);
//   // Invoked when tree arc examined (to white/undiscovered state)
//   bool TreeArc(StateId s, const Arc &a);
//   // Invoked when back arc examined (to grey/unfinished state)
//   bool BackArc(StateId s, const Arc &a);
//   // Invoked when forward or cross arc examined (to black/finished state)
//   bool ForwardOrCrossArc(StateId s, const Arc &a);
//   // Invoked when state finished (PARENT is kNoStateID and ARC == NULL
//   // when S is tree root)
//   void FinishState(StateId s, StateId parent, const Arc *parent_arc);
//   // Invoked after DFS visit
//   void FinishVisit();
// };

// An Fst state's DFS status
const int kDfsWhite = 0;  // Undiscovered
const int kDfsGrey = 1;   // Discovered & unfinished
const int kDfsBlack = 2;  // Finished

// An Fst state's DFS stack state
template <class F>
struct DfsState {
  typedef typename F::Arc Arc;
  typedef typename Arc::StateId StateId;

  DfsState(const F &fst, StateId s) : state_id(s), arc_iter(fst, s) {}

  void *operator new(size_t size, MemoryPool<DfsState<F>> *pool) {
    return pool->Allocate();
  }

  static void Destroy(DfsState<F> *dfs_state,
                      MemoryPool<DfsState<F>> *pool) {
    if (dfs_state) {
      dfs_state->~DfsState<F>();
      pool->Free(dfs_state);
    }
  }

  StateId state_id;         // Fst state ...
  ArcIterator<F> arc_iter;  // and its corresponding arcs
};

// Performs depth-first visitation. Visitor class argument determines
// actions and contains any return data. ArcFilter determines arcs
// that are considered.  If 'access_only' is true, performs visitation
// only to states accessible from the initial state.
//
// Note this is similar to Visit() in visit.h called with a LIFO
// queue except this version has a Visitor class specialized and
// augmented for a DFS.
template <class F, class V, class ArcFilter>
void DfsVisit(const F &fst, V *visitor, ArcFilter filter,
              bool access_only = false) {
  typedef typename F::Arc Arc;
  typedef typename Arc::StateId StateId;

  visitor->InitVisit(fst);

  StateId start = fst.Start();
  if (start == kNoStateId) {
    visitor->FinishVisit();
    return;
  }

  std::vector<char> state_color;          // Fst state DFS status
  std::stack<DfsState<F> *> state_stack;  // DFS execution stack
  MemoryPool<DfsState<F>> state_pool;     // Pool for DFSStates

  StateId nstates = start + 1;  // # of known states in general case
  bool expanded = false;
  if (fst.Properties(kExpanded, false)) {  // tests if expanded case, then
    nstates = CountStates(fst);            // uses ExpandedFst::NumStates().
    expanded = true;
  }

  state_color.resize(nstates, kDfsWhite);
  StateIterator<F> siter(fst);

  // Continue DFS while true
  bool dfs = true;

  // Iterate over trees in DFS forest.
  for (StateId root = start; dfs && root < nstates;) {
    state_color[root] = kDfsGrey;
    state_stack.push(new (&state_pool) DfsState<F>(fst, root));
    dfs = visitor->InitState(root, root);
    while (!state_stack.empty()) {
      DfsState<F> *dfs_state = state_stack.top();
      StateId s = dfs_state->state_id;
      if (s >= state_color.size()) {
        nstates = s + 1;
        state_color.resize(nstates, kDfsWhite);
      }
      ArcIterator<F> &aiter = dfs_state->arc_iter;
      if (!dfs || aiter.Done()) {
        state_color[s] = kDfsBlack;
        DfsState<F>::Destroy(dfs_state, &state_pool);
        state_stack.pop();
        if (!state_stack.empty()) {
          DfsState<F> *parent_state = state_stack.top();
          StateId p = parent_state->state_id;
          ArcIterator<F> &piter = parent_state->arc_iter;
          visitor->FinishState(s, p, &piter.Value());
          piter.Next();
        } else {
          visitor->FinishState(s, kNoStateId, 0);
        }
        continue;
      }
      const Arc &arc = aiter.Value();
      if (arc.nextstate >= state_color.size()) {
        nstates = arc.nextstate + 1;
        state_color.resize(nstates, kDfsWhite);
      }
      if (!filter(arc)) {
        aiter.Next();
        continue;
      }
      int next_color = state_color[arc.nextstate];
      switch (next_color) {
        default:
        case kDfsWhite:
          dfs = visitor->TreeArc(s, arc);
          if (!dfs) break;
          state_color[arc.nextstate] = kDfsGrey;
          state_stack.push(new (&state_pool) DfsState<F>(fst, arc.nextstate));
          dfs = visitor->InitState(arc.nextstate, root);
          break;
        case kDfsGrey:
          dfs = visitor->BackArc(s, arc);
          aiter.Next();
          break;
        case kDfsBlack:
          dfs = visitor->ForwardOrCrossArc(s, arc);
          aiter.Next();
          break;
      }
    }

    if (access_only) break;

    // Find next tree root
    for (root = root == start ? 0 : root + 1;
         root < nstates && state_color[root] != kDfsWhite; ++root) {
    }

    // Check for a state beyond the largest known state
    if (!expanded && root == nstates) {
      for (; !siter.Done(); siter.Next()) {
        if (siter.Value() == nstates) {
          ++nstates;
          state_color.push_back(kDfsWhite);
          break;
        }
      }
    }
  }
  visitor->FinishVisit();
}

template <class Arc, class V>
void DfsVisit(const Fst<Arc> &fst, V *visitor) {
  DfsVisit(fst, visitor, AnyArcFilter<Arc>());
}

}  // namespace fst

#endif  // FST_LIB_DFS_VISIT_H_