This file is indexed.

/usr/include/fst/concat.h is in libfst-dev 1.5.3+r3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Functions and classes to compute the concatenation of two FSTs.

#ifndef FST_LIB_CONCAT_H_
#define FST_LIB_CONCAT_H_

#include <algorithm>
#include <vector>

#include <fst/mutable-fst.h>
#include <fst/rational.h>


namespace fst {

// Computes the concatenation (product) of two FSTs. If FST1
// transduces string x to y with weight a and FST2 transduces string w
// to v with weight b, then their concatenation transduces string xw
// to yv with Times(a, b).
//
// This version modifies its MutableFst argument (in first position).
//
// Complexity:
// - Time: O(V1 + V2 + E2)
// - Space: O(V1 + V2 + E2)
// where Vi = # of states and Ei = # of arcs of the ith FST.
//
template <class Arc>
void Concat(MutableFst<Arc> *fst1, const Fst<Arc> &fst2) {
  typedef typename Arc::StateId StateId;
  typedef typename Arc::Label Label;
  typedef typename Arc::Weight Weight;

  // Checks that the symbol table are compatible.
  if (!CompatSymbols(fst1->InputSymbols(), fst2.InputSymbols()) ||
      !CompatSymbols(fst1->OutputSymbols(), fst2.OutputSymbols())) {
    FSTERROR() << "Concat: Input/output symbol tables of 1st argument "
               << "does not match input/output symbol tables of 2nd argument";
    fst1->SetProperties(kError, kError);
    return;
  }

  uint64 props1 = fst1->Properties(kFstProperties, false);
  uint64 props2 = fst2.Properties(kFstProperties, false);

  StateId start1 = fst1->Start();
  if (start1 == kNoStateId) {
    if (props2 & kError) fst1->SetProperties(kError, kError);
    return;
  }

  StateId numstates1 = fst1->NumStates();
  if (fst2.Properties(kExpanded, false))
    fst1->ReserveStates(numstates1 + CountStates(fst2));

  for (StateIterator<Fst<Arc>> siter2(fst2); !siter2.Done(); siter2.Next()) {
    StateId s1 = fst1->AddState();
    StateId s2 = siter2.Value();
    fst1->SetFinal(s1, fst2.Final(s2));
    fst1->ReserveArcs(s1, fst2.NumArcs(s2));
    for (ArcIterator<Fst<Arc>> aiter(fst2, s2); !aiter.Done(); aiter.Next()) {
      Arc arc = aiter.Value();
      arc.nextstate += numstates1;
      fst1->AddArc(s1, arc);
    }
  }

  StateId start2 = fst2.Start();
  for (StateId s1 = 0; s1 < numstates1; ++s1) {
    Weight final = fst1->Final(s1);
    if (final != Weight::Zero()) {
      fst1->SetFinal(s1, Weight::Zero());
      if (start2 != kNoStateId)
        fst1->AddArc(s1, Arc(0, 0, final, start2 + numstates1));
    }
  }
  if (start2 != kNoStateId)
    fst1->SetProperties(ConcatProperties(props1, props2), kFstProperties);
}

// Computes the concatentation of two FSTs.  This version modifies its
// MutableFst argument (in second position).
//
// Complexity:
// - Time: O(V1 + E1)
// - Space: O(V1 + E1)
// where Vi = # of states and Ei = # of arcs of the ith FST.
//
template <class Arc>
void Concat(const Fst<Arc> &fst1, MutableFst<Arc> *fst2) {
  typedef typename Arc::StateId StateId;
  typedef typename Arc::Label Label;
  typedef typename Arc::Weight Weight;

  // Checks that the symbol table are compatible.
  if (!CompatSymbols(fst1.InputSymbols(), fst2->InputSymbols()) ||
      !CompatSymbols(fst1.OutputSymbols(), fst2->OutputSymbols())) {
    FSTERROR() << "Concat: Input/output symbol tables of 1st argument "
               << "does not match input/output symbol tables of 2nd argument";
    fst2->SetProperties(kError, kError);
    return;
  }

  uint64 props1 = fst1.Properties(kFstProperties, false);
  uint64 props2 = fst2->Properties(kFstProperties, false);

  StateId start2 = fst2->Start();
  if (start2 == kNoStateId) {
    if (props1 & kError) fst2->SetProperties(kError, kError);
    return;
  }

  StateId numstates2 = fst2->NumStates();
  if (fst1.Properties(kExpanded, false))
    fst2->ReserveStates(numstates2 + CountStates(fst1));

  for (StateIterator<Fst<Arc>> siter(fst1); !siter.Done(); siter.Next()) {
    StateId s1 = siter.Value();
    StateId s2 = fst2->AddState();
    Weight final = fst1.Final(s1);
    fst2->ReserveArcs(s2, fst1.NumArcs(s1) + (final != Weight::Zero() ? 1 : 0));
    if (final != Weight::Zero()) fst2->AddArc(s2, Arc(0, 0, final, start2));
    for (ArcIterator<Fst<Arc>> aiter(fst1, s1); !aiter.Done(); aiter.Next()) {
      Arc arc = aiter.Value();
      arc.nextstate += numstates2;
      fst2->AddArc(s2, arc);
    }
  }
  StateId start1 = fst1.Start();
  fst2->SetStart(start1 == kNoStateId ? fst2->AddState() : start1 + numstates2);
  if (start1 != kNoStateId)
    fst2->SetProperties(ConcatProperties(props1, props2), kFstProperties);
}

// Computes the concatentation of two FSTs. This version modifies its
// RationalFst input (in first position).
template <class Arc>
void Concat(RationalFst<Arc> *fst1, const Fst<Arc> &fst2) {
  fst1->GetMutableImpl()->AddConcat(fst2, true);
}

// Computes the concatentation of two FSTs. This version modifies its
// RationalFst input (in second position).
template <class Arc>
void Concat(const Fst<Arc> &fst1, RationalFst<Arc> *fst2) {
  fst2->GetMutableImpl()->AddConcat(fst1, false);
}

typedef RationalFstOptions ConcatFstOptions;

// Computes the concatenation (product) of two FSTs; this version is a
// delayed Fst. If FST1 transduces string x to y with weight a and FST2
// transduces string w to v with weight b, then their concatenation
// transduces string xw to yv with Times(a, b).
//
// Complexity:
// - Time: O(v1 + e1 + v2 + e2),
// - Space: O(v1 + v2)
// where vi = # of states visited and ei = # of arcs visited of the
// ith FST. Constant time and space to visit an input state or arc is
// assumed and exclusive of caching.
template <class A>
class ConcatFst : public RationalFst<A> {
 public:
  typedef A Arc;
  typedef typename A::Weight Weight;
  typedef typename A::StateId StateId;

  ConcatFst(const Fst<A> &fst1, const Fst<A> &fst2) {
    GetMutableImpl()->InitConcat(fst1, fst2);
  }

  ConcatFst(const Fst<A> &fst1, const Fst<A> &fst2,
            const ConcatFstOptions &opts)
      : RationalFst<A>(opts) {
    GetMutableImpl()->InitConcat(fst1, fst2);
  }

  // See Fst<>::Copy() for doc.
  ConcatFst(const ConcatFst<A> &fst, bool safe = false)
      : RationalFst<A>(fst, safe) {}

  // Get a copy of this ConcatFst. See Fst<>::Copy() for further doc.
  ConcatFst<A> *Copy(bool safe = false) const override {
    return new ConcatFst<A>(*this, safe);
  }

 private:
  using ImplToFst<RationalFstImpl<A>>::GetImpl;
  using ImplToFst<RationalFstImpl<A>>::GetMutableImpl;
};

// Specialization for ConcatFst.
template <class A>
class StateIterator<ConcatFst<A>> : public StateIterator<RationalFst<A>> {
 public:
  explicit StateIterator(const ConcatFst<A> &fst)
      : StateIterator<RationalFst<A>>(fst) {}
};

// Specialization for ConcatFst.
template <class A>
class ArcIterator<ConcatFst<A>> : public ArcIterator<RationalFst<A>> {
 public:
  typedef typename A::StateId StateId;

  ArcIterator(const ConcatFst<A> &fst, StateId s)
      : ArcIterator<RationalFst<A>>(fst, s) {}
};

// Useful alias when using StdArc.
typedef ConcatFst<StdArc> StdConcatFst;

}  // namespace fst

#endif  // FST_LIB_CONCAT_H_