This file is indexed.

/usr/include/Field3D/MIPUtil.h is in libfield3d-dev 1.7.2-1+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
//----------------------------------------------------------------------------//

/*
 * Copyright (c) 2013 Sony Pictures Imageworks Inc
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the
 * distribution.  Neither the name of Sony Pictures Imageworks nor the
 * names of its contributors may be used to endorse or promote
 * products derived from this software without specific prior written
 * permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 */

//----------------------------------------------------------------------------//

/*! \file MIPUtil.h
  \brief Contains MIP-related utility functions
*/

//----------------------------------------------------------------------------//

#ifndef _INCLUDED_Field3D_MIPUtil_H_
#define _INCLUDED_Field3D_MIPUtil_H_

//----------------------------------------------------------------------------//

#include <vector>

#include <boost/thread/thread.hpp>
#include <boost/thread/mutex.hpp>

#include "Resample.h"
#include "SparseField.h"
#include "Types.h"

//----------------------------------------------------------------------------//

#include "ns.h"

FIELD3D_NAMESPACE_OPEN

//----------------------------------------------------------------------------//
// Functions
//----------------------------------------------------------------------------//

//! Computes the origin/offset of a field. 
V3i computeOffset(const FieldRes &f);

//! Constructs a MIP representation of the given field, with optional 
//! offset vector. The offset vector indicates the 'true' voxel space
//! coordinate of the (0, 0, 0) voxel, such that a consistent voxel placement
//! can be used for the MIP levels.
template <typename MIPField_T, typename Filter_T>
typename MIPField_T::Ptr
makeMIP(const typename MIPField_T::NestedType &base, const int minSize,
        const V3i &offset, const size_t numThreads);

//! Constructs a MIP representation of the given field.
template <typename MIPField_T, typename Filter_T>
typename MIPField_T::Ptr
makeMIP(const typename MIPField_T::NestedType &base, const int minSize,
        const size_t numThreads);

//----------------------------------------------------------------------------//
// Implementation details
//----------------------------------------------------------------------------//

namespace detail {

  //--------------------------------------------------------------------------//

  extern const std::string k_mipOffsetStr;

  //--------------------------------------------------------------------------//

  //! Used to delegate the choice of bit depth to process at
  template <typename T>
  struct ComputationType
  {
    typedef T type;
  };

  //! Specialization for half float
  template <>
  struct ComputationType<Field3D::half>
  {
    typedef float type;
  };

  //--------------------------------------------------------------------------//

  FIELD3D_API V3i mipResolution(const V3i &baseRes, const size_t level, 
                                const V3i &add);

  //--------------------------------------------------------------------------//

  //! Constant size for all dense fields
  template <typename Data_T>
  size_t threadingBlockSize(const DenseField<Data_T> & /* f */)
  {
    return 16;
  }
  
  //! Use block size for sparse fields
  template <typename Data_T>
  size_t threadingBlockSize(const SparseField<Data_T> &f)
  {
    return f.blockSize();
  }

  //--------------------------------------------------------------------------//

  template <typename Data_T>
  bool checkInputEmpty(const SparseField<Data_T> &src, 
                       const SparseField<Data_T> &/*tgt*/, 
                       const Box3i &tgtBox, const float support,
                       const size_t dim)
  {
    const int intSupport = static_cast<int>(std::ceil(support * 0.5));
    const int pad        = std::max(0, intSupport);
    Box3i     tgtBoxPad  = tgtBox;
    tgtBoxPad.min[dim]  -= pad;
    tgtBoxPad.max[dim]  += pad;
    Box3i     srcBoxPad  = tgtBoxPad;
    srcBoxPad.min[dim]  *= 2;
    srcBoxPad.max[dim]  *= 2;

    // Get the block coordinates
    const Box3i dbsBounds = blockCoords(clipBounds(srcBoxPad, src.dataWindow()),
                                        &src);

    static boost::mutex mutex;
    boost::mutex::scoped_lock lock(mutex);

    // Check all blocks
    for (int k = dbsBounds.min.z; k <= dbsBounds.max.z; ++k) {
      for (int j = dbsBounds.min.y; j <= dbsBounds.max.y; ++j) {
        for (int i = dbsBounds.min.x; i <= dbsBounds.max.x; ++i) {
          if (src.blockIsAllocated(i, j, k) ||
              src.getBlockEmptyValue(i, j, k) != static_cast<Data_T>(0)) {
            return false;
          }
        }
      } 
    }

    // No hits. Empty
    return true;
  }

  //--------------------------------------------------------------------------//

  //! Fallback version always returns false
  template <typename Field_T>
  bool checkInputEmpty(const Field_T &/*src*/, const Field_T &/*tgt*/, 
                       const Box3i &/*tgtBox*/, const float /*support*/,
                       const size_t /*dim*/)
  {
    return false;
  }

  //--------------------------------------------------------------------------//

  template <typename Field_T, typename FilterOp_T, bool IsAnalytic_T>
  struct MIPSeparableThreadOp
  {
    typedef typename Field_T::value_type T;

    MIPSeparableThreadOp(const Field_T &src, Field_T &tgt, 
                         const size_t level, const V3i &add,
                         const FilterOp_T &filterOp, 
                         const size_t dim, 
                         const std::vector<Box3i> &blocks,
                         size_t &nextIdx, boost::mutex &mutex)
      : m_src(src),
        m_tgt(tgt),
        m_filterOp(filterOp), 
        m_level(level), 
        m_add(add), 
        m_dim(dim),
        m_blocks(blocks),
        m_nextIdx(nextIdx),
        m_mutex(mutex),
        m_numBlocks(blocks.size())
    {
      // Empty
    }

    void operator() () 
    {
      using namespace std;

      // Defer to ComputationType to determine the processing data type
      typedef typename Field_T::value_type           Data_T;
      typedef typename ComputationType<Data_T>::type Value_T;

      // To ensure we don't sample outside source data
      Box3i srcDw = m_src.dataWindow();

      // Coordinate frame conversion constants
      const float tgtToSrcMult    = 2.0;
      const float filterCoordMult = 1.0f / (tgtToSrcMult);
    
      // Filter info, support size in target space
      const float support = m_filterOp.support();

      // Get next index to process
      size_t idx;
      {
        boost::mutex::scoped_lock lock(m_mutex);
        idx = m_nextIdx;
        m_nextIdx++;
      }
      // Keep going while there is data to process
      while (idx < m_numBlocks) {
        // Grab the bounds
        const Box3i box =  m_blocks[idx];
        // Early exit if input blocks are all empty
        if (!detail::checkInputEmpty(m_src, m_tgt, box, support, m_dim)) {
          // For each output voxel
          for (int k = box.min.z; k <= box.max.z; ++k) {
            for (int j = box.min.y; j <= box.max.y; ++j) {
              for (int i = box.min.x; i <= box.max.x; ++i) {
                Value_T accumValue(m_filterOp.initialValue());
                if (IsAnalytic_T) {
                  // Transform from current point in target frame to source frame
                  const int   curTgt = V3i(i, j, k)[m_dim];
                  const float curSrc = discToCont(curTgt) * tgtToSrcMult - m_add[m_dim];
                  // Find interval
                  int startSrc = 
                    static_cast<int>(std::floor(curSrc - support * tgtToSrcMult));
                  int endSrc   = 
                    static_cast<int>(std::ceil(curSrc + support * 
                                               tgtToSrcMult)) - 1;
                  // Clamp coordinates
                  startSrc     = std::max(startSrc, srcDw.min[m_dim]);
                  endSrc       = std::min(endSrc, srcDw.max[m_dim]);
                  // Loop over source voxels
                  for (int s = startSrc; s <= endSrc; ++s) {
                    // Source index
                    const int xIdx = m_dim == 0 ? s : i;
                    const int yIdx = m_dim == 1 ? s : j;
                    const int zIdx = m_dim == 2 ? s : k;
                    // Source voxel in continuous coords
                    const float srcP   = discToCont(s);
                    // Compute filter weight in source space (twice as wide)
                    const float weight = m_filterOp.eval(std::abs(srcP - curSrc) *
                                                         filterCoordMult);
                    // Value
                    const Value_T value = m_src.fastValue(xIdx, yIdx, zIdx);
                    // Update
                    if (weight > 0.0f) {
                      FilterOp_T::op(accumValue, value);
                    }
                  }
                  // Update final value
                  if (accumValue != 
                      static_cast<Value_T>(m_filterOp.initialValue())) {
                    m_tgt.fastLValue(i, j, k) = accumValue;
                  }
                } else {
                  float accumWeight  = 0.0f;
                  // Transform from current point in target frame to source frame
                  const int   curTgt = V3i(i, j, k)[m_dim];
                  const float curSrc = discToCont(curTgt) * tgtToSrcMult - m_add[m_dim];
                  // Find interval
                  int startSrc = 
                    static_cast<int>(std::floor(curSrc - support * tgtToSrcMult));
                  int endSrc   = 
                    static_cast<int>(std::ceil(curSrc + support * 
                                               tgtToSrcMult)) - 1;
                  // Clamp coordinates
                  startSrc     = std::max(startSrc, srcDw.min[m_dim]);
                  endSrc       = std::min(endSrc, srcDw.max[m_dim]);
                  // Loop over source voxels
                  for (int s = startSrc; s <= endSrc; ++s) {
                    // Source index
                    const int xIdx = m_dim == 0 ? s : i;
                    const int yIdx = m_dim == 1 ? s : j;
                    const int zIdx = m_dim == 2 ? s : k;
                    // Source voxel in continuous coords
                    const float srcP   = discToCont(s);
                    // Compute filter weight in source space (twice as wide)
                    const float weight = m_filterOp.eval(std::abs(srcP - curSrc) *
                                                         filterCoordMult);
                    // Value
                    const Value_T value = m_src.fastValue(xIdx, yIdx, zIdx);
                    // Update
                    accumWeight += weight;
                    accumValue  += value * weight;
                  }
                  // Update final value
                  if (accumWeight > 0.0f && 
                      accumValue != static_cast<Value_T>(0.0)) {
                    m_tgt.fastLValue(i, j, k) = accumValue / accumWeight;
                  }
                } // if (IsAnalytic_T)
              }
            }
          }
        } // Empty input
        // Get next index
        {
          boost::mutex::scoped_lock lock(m_mutex);
          idx = m_nextIdx;
          m_nextIdx++;
        }
      }
    }

  private:

    // Data members ---

    const Field_T            &m_src;
    Field_T                  &m_tgt;
    const FilterOp_T         &m_filterOp;
    const size_t              m_level;
    const V3i                &m_add;
    const size_t              m_dim;
    const std::vector<Box3i> &m_blocks;
    size_t                   &m_nextIdx;
    boost::mutex             &m_mutex;
    const size_t              m_numBlocks;
    
  };

  //--------------------------------------------------------------------------//

  //! Threaded implementation of separable MIP filtering
  template <typename Field_T, typename FilterOp_T>
  void mipSeparable(const Field_T &src, Field_T &tgt, 
                    const V3i &oldRes, const V3i &newRes, const size_t level, 
                    const V3i &add, const FilterOp_T &filterOp, 
                    const size_t dim, const size_t numThreads)
  {
    using namespace std;

    // To ensure we don't sample outside source data
    Box3i srcDw = src.dataWindow();

    // Compute new res
    V3i res;
    if (dim == 2) {
      res = newRes;
    } else if (dim == 1) {
      res = V3i(newRes.x, newRes.y, oldRes.z);
    } else {
      res = V3i(newRes.x, oldRes.y, oldRes.z);
    }

    // Resize new field
    tgt.setSize(res);
    
    // Determine granularity
    const size_t blockSize = threadingBlockSize(src);

    // Build block list
    std::vector<Box3i> blocks;
    for (int k = 0; k < res.z; k += blockSize) {
      for (int j = 0; j < res.y; j += blockSize) {
        for (int i = 0; i < res.x; i += blockSize) {
          Box3i box;
          // Initialize block size
          box.min = V3i(i, j, k);
          box.max = box.min + V3i(blockSize - 1);
          // Clip against resolution
          box.max.x = std::min(box.max.x, res.x - 1);
          box.max.y = std::min(box.max.y, res.y - 1);
          box.max.z = std::min(box.max.z, res.z - 1);
          // Add to list
          blocks.push_back(box);
        }
      }
    }

    // Next index counter and mutex
    size_t nextIdx = 0;
    boost::mutex mutex;

    // Launch threads ---

    boost::thread_group threads;

    for (size_t i = 0; i < numThreads; ++i) {
      threads.create_thread(
        MIPSeparableThreadOp<Field_T, FilterOp_T, FilterOp_T::isAnalytic >
        (src, tgt, level, add, filterOp, 
         dim, blocks, nextIdx, mutex));
    }

    // Join
    threads.join_all();
  }

  //--------------------------------------------------------------------------//

  template <typename Field_T, typename FilterOp_T>
  void mipResample(const Field_T &base, const Field_T &src, Field_T &tgt, 
                   const size_t level, const V3i &offset, 
                   const FilterOp_T &filterOp, 
                   const size_t numThreads)
  {
    using std::ceil;

    // Odd-numbered offsets need a pad of one in the negative directions
    const V3i add((offset.x % 2 == 0) ? 0 : 1,
                  (offset.y % 2 == 0) ? 0 : 1,
                  (offset.z % 2 == 0) ? 0 : 1);

    // Compute new res
    const Box3i baseDw  = base.dataWindow();
    const V3i   baseRes = baseDw.size() + V3i(1);
    const V3i   newRes  = mipResolution(baseRes, level, add);

    // Source res
    const Box3i srcDw  = src.dataWindow();
    const V3i   srcRes = srcDw.size() + V3i(1);

    // Temporary field for y component
    Field_T tmp;

    // X axis (src into tgt)
    mipSeparable(src, tgt, srcRes, newRes, level, add, filterOp, 0, numThreads);
    // Y axis (tgt into temp)
    mipSeparable(tgt, tmp, srcRes, newRes, level, add, filterOp, 1, numThreads);
    // Z axis (temp into tgt)
    mipSeparable(tmp, tgt, srcRes, newRes, level, add, filterOp, 2, numThreads);

    // Update final target with mapping and metadata
    tgt.name      = base.name;
    tgt.attribute = base.attribute;
    tgt.setMapping(base.mapping());
    tgt.copyMetadata(base);
  }

  //--------------------------------------------------------------------------//

  FIELD3D_API
  FieldMapping::Ptr adjustedMIPFieldMapping(const FieldRes *base,
                                            const V3i &baseRes,
                                            const Box3i &extents, 
                                            const size_t level);

  //--------------------------------------------------------------------------//

} // namespace detail

//----------------------------------------------------------------------------//
// Function implementations
//----------------------------------------------------------------------------//

template <typename MIPField_T, typename Filter_T>
typename MIPField_T::Ptr
makeMIP(const typename MIPField_T::NestedType &base, const int minSize,
        const size_t numThreads)
{
  // By default, there is no offset
  const V3i zero(0);
  // Call out to perform actual work
  return makeMIP<MIPField_T, Filter_T>(base, minSize, zero, numThreads);
}

//----------------------------------------------------------------------------//

template <typename MIPField_T, typename Filter_T>
typename MIPField_T::Ptr
makeMIP(const typename MIPField_T::NestedType &base, const int minSize,
        const V3i &baseOffset, const size_t numThreads)
{
  using namespace Field3D::detail;

  typedef typename MIPField_T::value_type    Data_T;
  typedef typename MIPField_T::NestedType    Src_T;
  typedef typename Src_T::Ptr                SrcPtr;
  typedef typename MIPField_T::Ptr           MIPPtr;
  typedef std::vector<typename Src_T::Ptr>   SrcVec;

  if (base.extents() != base.dataWindow()) {
    return MIPPtr();
  }
  
  // Initialize output vector with base resolution
  SrcVec result;
  result.push_back(field_dynamic_cast<Src_T>(base.clone()));

  // Iteration variables
  V3i res    = base.extents().size() + V3i(1);
  V3i offset = baseOffset;
  
  // Loop until minimum size is found
  size_t level = 1;
  while ((res.x > minSize || res.y > minSize || res.z > minSize) &&
         (res.x > 2 && res.y > 2 && res.z > 2)) {
    // Perform filtering
    SrcPtr nextField(new Src_T);
    mipResample(base, *result.back(), *nextField, level, offset, 
                Filter_T(), numThreads);
    // Add to vector of filtered fields
    result.push_back(nextField);
    // Set up for next iteration
    res = nextField->dataWindow().size() + V3i(1);
    // ... offset needs to be rounded towards negative inf, not towards zero
    for (int i = 0; i < 3; ++i) {
      if (offset[i] < 0) {
        offset[i] = (offset[i] - 1) / 2;
      } else {
        offset[i] /= 2;
      }
    }
    level++;
  }

  MIPPtr mipField(new MIPField_T);
  mipField->name = base.name;
  mipField->attribute = base.attribute;
  mipField->copyMetadata(base);
  mipField->setMIPOffset(baseOffset);
  mipField->setup(result);

  return mipField;
}

//----------------------------------------------------------------------------//

FIELD3D_NAMESPACE_HEADER_CLOSE

//----------------------------------------------------------------------------//

#endif // Include guard