This file is indexed.

/usr/include/libelfin/elf/data.hh is in libelfin-dev 0.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
// Copyright (c) 2013 Austin T. Clements. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.

#ifndef _ELFPP_DATA_HH_
#define _ELFPP_DATA_HH_

#include "common.hh"

#include <cstdint>
#include <cstring>
#include <string>

ELFPP_BEGIN_NAMESPACE

// Object file classes (ELF64 table 3)
enum class elfclass : unsigned char
{
        _32 = 1,                // 32-bit objects
        _64 = 2,                // 64-bit objects
};

std::string
to_string(elfclass v);

// Common basic data types
struct ElfTypes
{
        typedef std::uint16_t Half;
        typedef std::uint32_t Word;
        typedef std::int32_t  Sword;
};

struct Elf32 : public ElfTypes
{
        // ELF class
        static const elfclass cls = elfclass::_32;

        // Basic data types (ELF32 figure 1-2)
        typedef std::uint32_t Addr;
        typedef std::uint32_t Off;

        // Predicated types
        typedef Word Word32_Xword64;

        template<typename t32, typename t64>
        struct pick
        {
                typedef t32 t;
        };
};

struct Elf64 : ElfTypes
{
        // ELF class
        static const elfclass cls = elfclass::_64;

        // Basic data types (ELF64 table 1)
        typedef std::uint64_t Addr;
        typedef std::uint64_t Off;
        typedef std::uint64_t Xword;
        typedef std::int64_t  Sxword;

        // Predicated types
        typedef Xword Word32_Xword64;

        template<typename t32, typename t64>
        struct pick
        {
                typedef t64 t;
        };
};

// Data encodings (ELF64 table 4)
enum class elfdata : unsigned char
{
        lsb = 1,
        msb = 2,
};

std::string
to_string(elfdata v);

// Operating system and ABI identifiers (ELF64 table 5)
enum class elfosabi : unsigned char
{
        sysv = 0,
        hpux = 1,
        standalone = 255,
};

std::string
to_string(elfosabi v);

// Object file types (ELF64 table 6)
enum class et : ElfTypes::Half
{
        none   = 0,             // No file type
        rel    = 1,             // Relocatable object file
        exec   = 2,             // Executable file
        dyn    = 3,             // Shared object file
        core   = 4,             // Core file
        loos   = 0xfe00,        // Environment-specific use
        hios   = 0xfeff,
        loproc = 0xff00,        // Processor-specific use
        hiproc = 0xffff,
};

std::string
to_string(et v);

// ELF header (ELF32 figure 1-3, ELF64 figure 2)
template<typename E = Elf64, byte_order Order = byte_order::native>
struct Ehdr
{
        typedef E types;
        static const byte_order order = Order;

        // ELF identification
        unsigned char ei_magic[4];
        elfclass ei_class;
        elfdata ei_data;
        unsigned char ei_version;
        elfosabi ei_osabi;
        unsigned char ei_abiversion;
        unsigned char ei_pad[7];

        et               type;           // Object file type
        typename E::Half machine;        // Machine type
        typename E::Word version;        // Object file version
        typename E::Addr entry;          // Entry point address
        typename E::Off  phoff;          // Program header offset
        typename E::Off  shoff;          // Section header offset
        typename E::Word flags;          // Processor-specific flags
        typename E::Half ehsize;         // ELF header size
        typename E::Half phentsize;      // Size of program header entry
        typename E::Half phnum;          // Number of program header entries
        typename E::Half shentsize;      // Size of section header entry
        typename E::Half shnum;          // Number of section header entries
        typename E::Half shstrndx;       // Section name string table index

        template<typename E2>
        void from(const E2 &o)
        {
                std::memcpy(ei_magic, o.ei_magic, sizeof(ei_magic));
                ei_class = swizzle(o.ei_class, o.order, order);
                ei_data = swizzle(o.ei_data, o.order, order);
                ei_version = swizzle(o.ei_version, o.order, order);
                ei_osabi = swizzle(o.ei_osabi, o.order, order);
                ei_abiversion = swizzle(o.ei_abiversion, o.order, order);
                std::memcpy(ei_pad, o.ei_pad, sizeof(ei_pad));

                type      = swizzle(o.type, o.order, order);
                machine   = swizzle(o.machine, o.order, order);
                version   = swizzle(o.version, o.order, order);
                entry     = swizzle(o.entry, o.order, order);
                phoff     = swizzle(o.phoff, o.order, order);
                shoff     = swizzle(o.shoff, o.order, order);
                flags     = swizzle(o.flags, o.order, order);
                ehsize    = swizzle(o.ehsize, o.order, order);
                phentsize = swizzle(o.phentsize, o.order, order);
                phnum     = swizzle(o.phnum, o.order, order);
                shentsize = swizzle(o.shentsize, o.order, order);
                shnum     = swizzle(o.shnum, o.order, order);
                shstrndx  = swizzle(o.shstrndx, o.order, order);
        }
};

// Special section indices (ELF32 figure 1-7, ELF64 table 7)
//
// This is an integer with a few special values, so this is a regular
// enum, rather than a type-safe enum.  However, this is declared in a
// namespace and then used to avoid polluting the elf:: namespace.
namespace enums {
enum shn : ElfTypes::Half       // This is a Word in Shdr and Half in Sym.
{
        undef = 0,              // Undefined or meaningless

        loproc = 0xff00,        // Processor-specific use
        hiproc = 0xff1f,
        loos   = 0xff20,        // Environment-specific use
        hios   = 0xff3f,

        abs    = 0xfff1,        // Reference is an absolute value
        common = 0xfff2,        // Symbol declared as a common block
};

std::string
to_string(shn v);
}

using enums::shn;

// Section types (ELF64 table 8)
enum class sht : ElfTypes::Word
{
        null     = 0,           // Marks an unseen section header
        progbits = 1,           // Contains information defined by the program
        symtab   = 2,           // Contains a linker symbol table
        strtab   = 3,           // Contains a string table
        rela     = 4,           // Contains "Rela" type relocation entries
        hash     = 5,           // Contains a symbol hash table
        dynamic  = 6,           // Contains dynamic linking tables
        note     = 7,           // Contains note information
        nobits   = 8,           // Contains uninitialized space;
                                // does not occupy any space in the file
        rel      = 9,           // Contains "Rel" type relocation entries
        shlib    = 10,          // Reserved
        dynsym   = 11,          // Contains a dynamic loader symbol table
        loos     = 0x60000000,  // Environment-specific use
        hios     = 0x6FFFFFFF,
        loproc   = 0x70000000,  // Processor-specific use
        hiproc   = 0x7FFFFFFF,
};

std::string
to_string(sht v);

// Section attributes (ELF64 table 9).  Note: This is an Elf32_Word in
// ELF32.  We use the larger ELF64 type for the canonical
// representation and switch it out for a plain Elf32_Word in the
// ELF32 format.
enum class shf : Elf64::Xword
{
        write     = 0x1,        // Section contains writable data
        alloc     = 0x2,        // Section is allocated in memory image of program
        execinstr = 0x4,        // Section contains executable instructions
        maskos    = 0x0F000000, // Environment-specific use
        maskproc  = 0xF0000000, // Processor-specific use
};

std::string
to_string(shf v);

static inline constexpr shf operator&(shf a, shf b)
{
        return (shf)((std::uint64_t)a & (std::uint64_t)b);
}

static inline constexpr shf operator|(shf a, shf b)
{
        return (shf)((std::uint64_t)a | (std::uint64_t)b);
}

static inline constexpr shf operator^(shf a, shf b)
{
        return (shf)((std::uint64_t)a ^ (std::uint64_t)b);
}

static inline constexpr shf operator~(shf a)
{
        return (shf)~((std::uint64_t)a);
}

static inline shf& operator&=(shf &a, shf b)
{
        a = a & b;
        return a;
}

static inline shf& operator|=(shf &a, shf b)
{
        a = a | b;
        return a;
}

static inline shf& operator^=(shf &a, shf b)
{
        a = a ^ b;
        return a;
}

// Section header (ELF32 figure 1-8, ELF64 figure 3)
template<typename E = Elf64, byte_order Order = byte_order::native>
struct Shdr
{
        typedef E types;
        static const byte_order order = Order;
        // Section numbers are half-words in some structures and full
        // words in others. Here we declare a local shn type that is
        // elf::shn for the native byte order, but the full word for
        // specific encoding byte orders.
        typedef typename internal::OrderPick<Order, elf::shn, typename E::Word, typename E::Word>::T shn;

        typename E::Word           name; // Section name
        sht                        type; // Section type
        typename E::template pick<typename E::Word, shf>::t flags; // Section attributes
        typename E::Addr           addr; // Virtual address in memory
        typename E::Off            offset; // Offset in file
        typename E::Word32_Xword64 size; // Size of section
        shn                        link; // Link to other section
        typename E::Word           info; // Miscellaneous information
        typename E::Word32_Xword64 addralign; // Address alignment boundary
        typename E::Word32_Xword64 entsize; // Size of entries, if section has table

        template<typename E2>
        void from(const E2 &o)
        {
                name      = swizzle(o.name, o.order, order);
                type      = swizzle(o.type, o.order, order);
                flags     = (decltype(flags))swizzle(o.flags, o.order, order);
                addr      = swizzle(o.addr, o.order, order);
                offset    = swizzle(o.offset, o.order, order);
                size      = swizzle(o.size, o.order, order);
                link      = (decltype(link))swizzle((typename E::Word)o.link, o.order, order);
                info      = swizzle(o.info, o.order, order);
                addralign = swizzle(o.addralign, o.order, order);
                entsize   = swizzle(o.entsize, o.order, order);
        }
};

// Segment types (ELF64 table 16)
enum class pt : ElfTypes::Word
{
        null    = 0,            // Unused entry
        load    = 1,            // Loadable segment
        dynamic = 2,            // Dynamic linking tables
        interp  = 3,            // Program interpreter path name
        note    = 4,            // Note sections
        shlib   = 5,            // Reserved
        phdr    = 6,            // Program header table
        loos    = 0x60000000,   // Environment-specific use
        hios    = 0x6FFFFFFF,
        loproc  = 0x70000000,   // Processor-specific use
        hiproc  = 0x7FFFFFFF,
};

std::string
to_string(pt v);

// Segment attributes
enum class pf : ElfTypes::Word
{
        x        = 0x1,         // Execute permission
        w        = 0x2,         // Write permission
        r        = 0x4,         // Read permission
        maskos   = 0x00FF0000,  // Environment-specific use
        maskproc = 0xFF000000,  // Processor-specific use
};

std::string
to_string(pf v);

static inline constexpr pf operator&(pf a, pf b)
{
        return (pf)((std::uint64_t)a & (std::uint64_t)b);
}

static inline constexpr pf operator|(pf a, pf b)
{
        return (pf)((std::uint64_t)a | (std::uint64_t)b);
}

static inline constexpr pf operator^(pf a, pf b)
{
        return (pf)((std::uint64_t)a ^ (std::uint64_t)b);
}

static inline constexpr pf operator~(pf a)
{
        return (pf)~((std::uint64_t)a);
}

static inline pf& operator&=(pf &a, pf b)
{
        a = a & b;
        return a;
}

static inline pf& operator|=(pf &a, pf b)
{
        a = a | b;
        return a;
}

static inline pf& operator^=(pf &a, pf b)
{
        a = a ^ b;
        return a;
}

// Program header (ELF32 figure 2-1, ELF64 figure 6)
template<typename E = Elf64, byte_order Order = byte_order::native>
struct Phdr;

template<byte_order Order>
struct Phdr<Elf32, Order>
{
        typedef Elf32 types;
        static const byte_order order = Order;

        pt           type;      // Type of segment
        Elf32::Off   offset;    // Offset in file
        Elf32::Addr  vaddr;     // Virtual address in memory
        Elf32::Addr  paddr;     // Reserved
        Elf32::Word  filesz;    // Size of segment in file
        Elf32::Word  memsz;     // Size of segment in memory
        pf           flags;     // Segment attributes
        Elf32::Word  align;     // Alignment of segment

        template<typename E2>
        void from(const E2 &o)
        {
                type   = swizzle(o.type, o.order, order);
                offset = swizzle(o.offset, o.order, order);
                vaddr  = swizzle(o.vaddr, o.order, order);
                paddr  = swizzle(o.paddr, o.order, order);
                filesz = swizzle(o.filesz, o.order, order);
                memsz  = swizzle(o.memsz, o.order, order);
                flags  = swizzle(o.flags, o.order, order);
                align  = swizzle(o.align, o.order, order);
        }
};

template<byte_order Order>
struct Phdr<Elf64, Order>
{
        typedef Elf64 types;
        static const byte_order order = Order;

        pt           type;      // Type of segment
        pf           flags;     // Segment attributes
        Elf64::Off   offset;    // Offset in file
        Elf64::Addr  vaddr;     // Virtual address in memory
        Elf64::Addr  paddr;     // Reserved
        Elf64::Xword filesz;    // Size of segment in file
        Elf64::Xword memsz;     // Size of segment in memory
        Elf64::Xword align;     // Alignment of segment

        template<typename E2>
        void from(const E2 &o)
        {
                type   = swizzle(o.type, o.order, order);
                offset = swizzle(o.offset, o.order, order);
                vaddr  = swizzle(o.vaddr, o.order, order);
                paddr  = swizzle(o.paddr, o.order, order);
                filesz = swizzle(o.filesz, o.order, order);
                memsz  = swizzle(o.memsz, o.order, order);
                flags  = swizzle(o.flags, o.order, order);
                align  = swizzle(o.align, o.order, order);
        }
};

// Symbol bindings (ELF32 figure 1-16, ELF64 table 14)
enum class stb : unsigned char
{
        local  = 0,             // Not visible outside the object file
        global = 1,             // Global symbol
        weak   = 2,             // Global scope, but with lower
                                // precedence than global symbols
        loos   = 10,            // Environment-specific use
        hios   = 12,
        loproc = 13,            // Processor-specific use
        hiproc = 15,
};

std::string
to_string(stb v);

// Symbol types (ELF32 figure 1-17, ELF64 table 15)
enum class stt : unsigned char
{
        notype  = 0,            // No type (e.g., absolute symbol)
        object  = 1,            // Data object
        func    = 2,            // Function entry point
        section = 3,            // Symbol is associated with a section
        file    = 4,            // Source file associated with the
                                // object file
        loos    = 10,           // Environment-specific use
        hios    = 12,
        loproc  = 13,           // Processor-specific use
        hiproc  = 15,
};

std::string
to_string(stt v);

// Symbol table (ELF32 figure 1-15, ELF64 figure 4)
template<typename E = Elf64, byte_order Order = byte_order::native>
struct Sym;

template<byte_order Order>
struct Sym<Elf32, Order>
{
        typedef Elf32 types;
        static const byte_order order = Order;

        Elf32::Word   name;  // Symbol name (strtab offset)
        Elf32::Addr   value; // Symbol value (address)
        Elf32::Word   size;  // Size of object
        unsigned char info;  // Type and binding attributes
        unsigned char other; // Reserved
        shn           shnxd; // Section table index

        template<typename E2>
        void from(const E2 &o)
        {
                name  = swizzle(o.name, o.order, order);
                value = swizzle(o.value, o.order, order);
                size  = swizzle(o.size, o.order, order);
                info  = o.info;
                other = o.other;
                shnxd = swizzle(o.shnxd, o.order, order);
        }

        stb binding() const
        {
                return (stb)(info >> 4);
        }

        void set_binding(stb v)
        {
                info = (info & 0x0F) | ((unsigned char)v << 4);
        }

        stt type() const
        {
                return (stt)(info & 0xF);
        }

        void set_type(stt v)
        {
                info = (info & 0xF0) | (unsigned char)v;
        }
};

template<byte_order Order>
struct Sym<Elf64, Order>
{
        typedef Elf64 types;
        static const byte_order order = Order;

        Elf64::Word   name;  // Symbol name (strtab offset)
        unsigned char info;  // Type and binding attributes
        unsigned char other; // Reserved
        shn           shnxd; // Section table index
        Elf64::Addr   value; // Symbol value (address)
        Elf64::Xword  size;  // Size of object

        template<typename E2>
        void from(const E2 &o)
        {
                name  = swizzle(o.name, o.order, order);
                value = swizzle(o.value, o.order, order);
                size  = swizzle(o.size, o.order, order);
                info  = o.info;
                other = o.other;
                shnxd = swizzle(o.shnxd, o.order, order);
        }

        stb binding() const
        {
                return (stb)(info >> 4);
        }

        void set_binding(stb v) const
        {
                info = (info & 0xF) | ((unsigned char)v << 4);
        }

        stt type() const
        {
                return (stt)(info & 0xF);
        }

        void set_type(stt v)
        {
                info = (info & 0xF0) | (unsigned char)v;
        }
};

ELFPP_END_NAMESPACE

#endif