This file is indexed.

/usr/include/dune/pdelab/newton/newton.hh is in libdune-pdelab-dev 2.5.0~20170124g7cf9f47a-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_PDELAB_NEWTON_NEWTON_HH
#define DUNE_PDELAB_NEWTON_NEWTON_HH

#include <iostream>
#include <iomanip>
#include <cmath>
#include <memory>

#include <math.h>

#include <dune/common/exceptions.hh>
#include <dune/common/ios_state.hh>
#include <dune/common/timer.hh>
#include <dune/common/parametertree.hh>

#include <dune/pdelab/backend/solver.hh>

namespace Dune
{
  namespace PDELab
  {
    // Exception classes used in NewtonSolver
    class NewtonError : public Exception {};
    class NewtonDefectError : public NewtonError {};
    class NewtonLinearSolverError : public NewtonError {};
    class NewtonLineSearchError : public NewtonError {};
    class NewtonNotConverged : public NewtonError {};

    // Status information of Newton's method
    template<class RFType>
    struct NewtonResult : LinearSolverResult<RFType>
    {
      RFType first_defect;       // the first defect
      RFType defect;             // the final defect
      double assembler_time;     // Cumulative time for matrix assembly
      double linear_solver_time; // Cumulative time for linear solver
      int linear_solver_iterations; // Total number of linear iterations

      NewtonResult() :
        first_defect(0.0), defect(0.0), assembler_time(0.0), linear_solver_time(0.0),
        linear_solver_iterations(0) {}
    };

    template<class GOS, class TrlV, class TstV>
    class NewtonBase
    {
      typedef GOS GridOperator;
      typedef TrlV TrialVector;
      typedef TstV TestVector;

      typedef typename TestVector::ElementType RFType;
      typedef typename GOS::Traits::Jacobian Matrix;


    public:
      // export result type
      typedef NewtonResult<RFType> Result;

      void setVerbosityLevel(unsigned int verbosity_level)
      {
        if (gridoperator_.trialGridFunctionSpace().gridView().comm().rank()>0)
          verbosity_level_ = 0;
        else
          verbosity_level_ = verbosity_level;
      }

      //! Set whether the jacobian matrix should be kept across calls to apply().
      void setKeepMatrix(bool b)
      {
        keep_matrix_ = b;
      }

      //! Return whether the jacobian matrix is kept across calls to apply().
      bool keepMatrix() const
      {
        return keep_matrix_;
      }

      //! Discard the stored Jacobian matrix.
      void discardMatrix()
      {
        if(A_)
          A_.reset();
      }

    protected:
      const GridOperator& gridoperator_;
      TrialVector *u_;
      std::shared_ptr<TrialVector> z_;
      std::shared_ptr<TestVector> r_;
      std::shared_ptr<Matrix> A_;
      Result res_;
      unsigned int verbosity_level_;
      RFType prev_defect_;
      RFType linear_reduction_;
      bool reassembled_;
      RFType reduction_;
      RFType abs_limit_;
      bool keep_matrix_;

      NewtonBase(const GridOperator& go, TrialVector& u)
        : gridoperator_(go)
        , u_(&u)
        , verbosity_level_(1)
        , keep_matrix_(true)
      {
        if (gridoperator_.trialGridFunctionSpace().gridView().comm().rank()>0)
          verbosity_level_ = 0;
      }

      NewtonBase(const GridOperator& go)
        : gridoperator_(go)
        , u_(0)
        , verbosity_level_(1)
        , keep_matrix_(true)
      {
        if (gridoperator_.trialGridFunctionSpace().gridView().comm().rank()>0)
          verbosity_level_ = 0;
      }

      virtual ~NewtonBase() { }

      virtual bool terminate() = 0;
      virtual void prepare_step(Matrix& A, TestVector& r) = 0;
      virtual void line_search(TrialVector& z, TestVector& r) = 0;
      virtual void defect(TestVector& r) = 0;
    }; // end class NewtonBase

    template<class GOS, class S, class TrlV, class TstV>
    class NewtonSolver : public virtual NewtonBase<GOS,TrlV,TstV>
    {
      typedef S Solver;
      typedef GOS GridOperator;
      typedef TrlV TrialVector;
      typedef TstV TestVector;

      typedef typename TestVector::ElementType RFType;
      typedef typename GOS::Traits::Jacobian Matrix;

    public:
      typedef NewtonResult<RFType> Result;

      NewtonSolver(const GridOperator& go, TrialVector& u_, Solver& solver)
        : NewtonBase<GOS,TrlV,TstV>(go,u_)
        , solver_(solver)
        , result_valid_(false)
      {}

      NewtonSolver(const GridOperator& go, Solver& solver)
        : NewtonBase<GOS,TrlV,TstV>(go)
        , solver_(solver)
        , result_valid_(false)
      {}

      void apply();

      void apply(TrialVector& u_);

      const Result& result() const
      {
        if (!result_valid_)
          DUNE_THROW(NewtonError,
                     "NewtonSolver::result() called before NewtonSolver::solve()");
        return this->res_;
      }

    protected:
      virtual void defect(TestVector& r)
      {
        r = 0.0;                                        // TODO: vector interface
        this->gridoperator_.residual(*this->u_, r);
        this->res_.defect = this->solver_.norm(r);                    // TODO: solver interface
        if (!std::isfinite(this->res_.defect))
          DUNE_THROW(NewtonDefectError,
                     "NewtonSolver::defect(): Non-linear defect is NaN or Inf");
      }


    private:
      void linearSolve(Matrix& A, TrialVector& z, TestVector& r) const
      {
        if (this->verbosity_level_ >= 4)
          std::cout << "      Solving linear system..." << std::endl;
        z = 0.0;                                        // TODO: vector interface
        this->solver_.apply(A, z, r, this->linear_reduction_);        // TODO: solver interface

        ios_base_all_saver restorer(std::cout); // store old ios flags

        if (!this->solver_.result().converged)                 // TODO: solver interface
          DUNE_THROW(NewtonLinearSolverError,
                     "NewtonSolver::linearSolve(): Linear solver did not converge "
                     "in " << this->solver_.result().iterations << " iterations");
        if (this->verbosity_level_ >= 4)
          std::cout << "          linear solver iterations:     "
                    << std::setw(12) << solver_.result().iterations << std::endl
                    << "          linear defect reduction:      "
                    << std::setw(12) << std::setprecision(4) << std::scientific
                    << solver_.result().reduction << std::endl;
      }

      Solver& solver_;
      bool result_valid_;
    }; // end class NewtonSolver

    template<class GOS, class S, class TrlV, class TstV>
    void NewtonSolver<GOS,S,TrlV,TstV>::apply(TrialVector& u)
    {
      this->u_ = &u;
      apply();
    }

    template<class GOS, class S, class TrlV, class TstV>
    void NewtonSolver<GOS,S,TrlV,TstV>::apply()
    {
      this->res_.iterations = 0;
      this->res_.converged = false;
      this->res_.reduction = 1.0;
      this->res_.conv_rate = 1.0;
      this->res_.elapsed = 0.0;
      this->res_.assembler_time = 0.0;
      this->res_.linear_solver_time = 0.0;
      this->res_.linear_solver_iterations = 0;
      result_valid_ = true;
      Timer timer;

      try
        {
          if(!this->r_) {
            // std::cout << "=== Setting up residual vector ..." << std::endl;
            this->r_ = std::make_shared<TestVector>(this->gridoperator_.testGridFunctionSpace());
          }
          // residual calculation in member function "defect":
          //--------------------------------------------------
          // - set residual vector to zero
          // - calculate new residual
          // - store norm of residual in "this->res_.defect"
          this->defect(*this->r_);
          this->res_.first_defect = this->res_.defect;
          this->prev_defect_ = this->res_.defect;

          if (this->verbosity_level_ >= 2)
            {
              // store old ios flags
              ios_base_all_saver restorer(std::cout);
              std::cout << "  Initial defect: "
                        << std::setw(12) << std::setprecision(4) << std::scientific
                        << this->res_.defect << std::endl;
            }

          if(!this->A_) {
            // std::cout << "==== Setting up jacobian matrix ... " << std::endl;
            this->A_ = std::make_shared<Matrix>(this->gridoperator_);
          }
          if(!this->z_) {
            // std::cout << "==== Setting up correction vector ... " << std::endl;
            this->z_ = std::make_shared<TrialVector>(this->gridoperator_.trialGridFunctionSpace());
          }

          while (!this->terminate())
            {
              if (this->verbosity_level_ >= 3)
                std::cout << "  Newton iteration " << this->res_.iterations
                          << " --------------------------------" << std::endl;

              Timer assembler_timer;
              try
                {
                  // jacobian calculation in member function "prepare_step"
                  //-------------------------------------------------------
                  // - if above reassemble threshold
                  //   - set jacobian to zero
                  //   - calculate new jacobian
                  // - set linear reduction
                  this->prepare_step(*this->A_,*this->r_);
                }
              catch (...)
                {
                  this->res_.assembler_time += assembler_timer.elapsed();
                  throw;
                }
              double assembler_time = assembler_timer.elapsed();
              this->res_.assembler_time += assembler_time;
              if (this->verbosity_level_ >= 3)
                std::cout << "      matrix assembly time:             "
                          << std::setw(12) << std::setprecision(4) << std::scientific
                          << assembler_time << std::endl;

              Timer linear_solver_timer;
              try
                {
                  // solution of linear system in member function "linearSolve"
                  //-----------------------------------------------------------
                  // - set initial guess for correction z to zero
                  // - call linear solver
                  this->linearSolve(*this->A_, *this->z_, *this->r_);
                }
              catch (...)
                {
                  this->res_.linear_solver_time += linear_solver_timer.elapsed();
                  this->res_.linear_solver_iterations += this->solver_.result().iterations;
                  throw;
                }
              double linear_solver_time = linear_solver_timer.elapsed();
              this->res_.linear_solver_time += linear_solver_time;
              this->res_.linear_solver_iterations += this->solver_.result().iterations;

              try
                {
                  // line search with correction z
                  // the undamped version is also integrated in here
                  this->line_search(*this->z_, *this->r_);
                }
              catch (NewtonLineSearchError)
                {
                  if (this->reassembled_)
                    throw;
                  if (this->verbosity_level_ >= 3)
                    std::cout << "      line search failed - trying again with reassembled matrix" << std::endl;
                  continue;
                }

              this->res_.reduction = this->res_.defect/this->res_.first_defect;
              this->res_.iterations++;
              this->res_.conv_rate = std::pow(this->res_.reduction, 1.0/this->res_.iterations);

              // store old ios flags
              ios_base_all_saver restorer(std::cout);

              if (this->verbosity_level_ >= 3)
                std::cout << "      linear solver time:               "
                          << std::setw(12) << std::setprecision(4) << std::scientific
                          << linear_solver_time << std::endl
                          << "      defect reduction (this iteration):"
                          << std::setw(12) << std::setprecision(4) << std::scientific
                          << this->res_.defect/this->prev_defect_ << std::endl
                          << "      defect reduction (total):         "
                          << std::setw(12) << std::setprecision(4) << std::scientific
                          << this->res_.reduction << std::endl
                          << "      new defect:                       "
                          << std::setw(12) << std::setprecision(4) << std::scientific
                          << this->res_.defect << std::endl;
              if (this->verbosity_level_ == 2)
                std::cout << "  Newton iteration " << std::setw(2) << this->res_.iterations
                          << ".  New defect: "
                          << std::setw(12) << std::setprecision(4) << std::scientific
                          << this->res_.defect
                          << ".  Reduction (this): "
                          << std::setw(12) << std::setprecision(4) << std::scientific
                          << this->res_.defect/this->prev_defect_
                          << ".  Reduction (total): "
                          << std::setw(12) << std::setprecision(4) << std::scientific
                          << this->res_.reduction << std::endl;
            } // end while
        } // end try
      catch(...)
        {
          this->res_.elapsed = timer.elapsed();
          throw;
        }
      this->res_.elapsed = timer.elapsed();

      ios_base_all_saver restorer(std::cout); // store old ios flags

      if (this->verbosity_level_ == 1)
        std::cout << "  Newton converged after " << std::setw(2) << this->res_.iterations
                  << " iterations.  Reduction: "
                  << std::setw(12) << std::setprecision(4) << std::scientific
                  << this->res_.reduction
                  << "   (" << std::setprecision(4) << this->res_.elapsed << "s)"
                  << std::endl;

      if(!this->keep_matrix_)
        this->A_.reset();
    } // end apply

    template<class GOS, class TrlV, class TstV>
    class NewtonTerminate : public virtual NewtonBase<GOS,TrlV,TstV>
    {
      typedef GOS GridOperator;
      typedef TrlV TrialVector;

      typedef typename TstV::ElementType RFType;

    public:
      NewtonTerminate(const GridOperator& go, TrialVector& u_)
        : NewtonBase<GOS,TrlV,TstV>(go,u_)
        , maxit_(40)
        , force_iteration_(false)
      {
        this->reduction_ = 1e-8;
        this->abs_limit_ = 1e-12;
      }

      NewtonTerminate(const GridOperator& go)
        : NewtonBase<GOS,TrlV,TstV>(go)
        , maxit_(40)
        , force_iteration_(false)
      {
        this->reduction_ = 1e-8;
        this->abs_limit_ = 1e-12;
      }

      void setReduction(RFType reduction)
      {
        this->reduction_ = reduction;
      }

      void setMaxIterations(unsigned int maxit)
      {
        maxit_ = maxit;
      }

      void setForceIteration(bool force_iteration)
      {
        force_iteration_ = force_iteration;
      }

      void setAbsoluteLimit(RFType abs_limit_)
      {
        this->abs_limit_ = abs_limit_;
      }

      virtual bool terminate()
      {
        if (force_iteration_ && this->res_.iterations == 0)
          return false;
        this->res_.converged = this->res_.defect < this->abs_limit_
          || this->res_.defect < this->res_.first_defect * this->reduction_;
        if (this->res_.iterations >= maxit_ && !this->res_.converged)
          DUNE_THROW(NewtonNotConverged,
                     "NewtonTerminate::terminate(): Maximum iteration count reached");
        return this->res_.converged;
      }

    private:
      unsigned int maxit_;
      bool force_iteration_;
    }; // end class NewtonTerminate

    template<class GOS, class TrlV, class TstV>
    class NewtonPrepareStep : public virtual NewtonBase<GOS,TrlV,TstV>
    {
      typedef GOS GridOperator;
      typedef TrlV TrialVector;

      typedef typename TstV::ElementType RFType;
      typedef typename GOS::Traits::Jacobian Matrix;

    public:
      NewtonPrepareStep(const GridOperator& go, TrialVector& u_)
        : NewtonBase<GOS,TrlV,TstV>(go,u_)
        , min_linear_reduction_(1e-3)
        , fixed_linear_reduction_(0.0)
        , reassemble_threshold_(0.0)
      {}

      NewtonPrepareStep(const GridOperator& go)
        : NewtonBase<GOS,TrlV,TstV>(go)
        , min_linear_reduction_(1e-3)
        , fixed_linear_reduction_(0.0)
        , reassemble_threshold_(0.0)
      {}

      /**\brief set the minimal reduction in the linear solver

         \note with min_linear_reduction > 0, the linear reduction will be
         determined as mininum of the min_linear_reduction and the
         linear_reduction needed to achieve second order
         Newton convergence. */
      void setMinLinearReduction(RFType min_linear_reduction)
      {
        min_linear_reduction_ = min_linear_reduction;
      }

      /**\brief set a fixed reduction in the linear solver (overwrites setMinLinearReduction)

         \note with fixed_linear_reduction > 0, the linear reduction
         rate will always be fixed to min_linear_reduction. */
      void setFixedLinearReduction(bool fixed_linear_reduction)
      {
        fixed_linear_reduction_ = fixed_linear_reduction;
      }

      /**\brief set a threshold, when the linear operator is reassembled

         We allow to keep the linear operator over several newton
         iterations. If the reduction in the newton drops below a
         given threshold the linear operator is reassembled to ensure
         convergence.
       */
      void setReassembleThreshold(RFType reassemble_threshold)
      {
        reassemble_threshold_ = reassemble_threshold;
      }

      virtual void prepare_step(Matrix& A, TstV& )
      {
        this->reassembled_ = false;
        if (this->res_.defect/this->prev_defect_ > reassemble_threshold_)
          {
            if (this->verbosity_level_ >= 3)
              std::cout << "      Reassembling matrix..." << std::endl;
            A = 0.0;                                    // TODO: Matrix interface
            this->gridoperator_.jacobian(*this->u_, A);
            this->reassembled_ = true;
          }

        if (fixed_linear_reduction_ == true)
          this->linear_reduction_ = min_linear_reduction_;
        else {
          // determine maximum defect, where Newton is converged.
          RFType stop_defect =
            std::max(this->res_.first_defect * this->reduction_,
                     this->abs_limit_);

          /*
            To achieve second order convergence of newton
            we need a linear reduction of at least
            current_defect^2/prev_defect^2.
            For the last newton step a linear reduction of
            1/10*end_defect/current_defect
            is sufficient for convergence.
          */
          if ( stop_defect/(10*this->res_.defect) >
               this->res_.defect*this->res_.defect/(this->prev_defect_*this->prev_defect_) )
            this->linear_reduction_ =
              stop_defect/(10*this->res_.defect);
          else
            this->linear_reduction_ =
              std::min(min_linear_reduction_,this->res_.defect*this->res_.defect/(this->prev_defect_*this->prev_defect_));
        }

        this->prev_defect_ = this->res_.defect;

        ios_base_all_saver restorer(std::cout); // store old ios flags

        if (this->verbosity_level_ >= 3)
          std::cout << "      requested linear reduction:       "
                    << std::setw(12) << std::setprecision(4) << std::scientific
                    << this->linear_reduction_ << std::endl;
      }

    private:
      RFType min_linear_reduction_;
      bool fixed_linear_reduction_;
      RFType reassemble_threshold_;
    }; // end class NewtonPrepareStep

    template<class GOS, class TrlV, class TstV>
    class NewtonLineSearch : public virtual NewtonBase<GOS,TrlV,TstV>
    {
      typedef GOS GridOperator;
      typedef TrlV TrialVector;
      typedef TstV TestVector;

      typedef typename TestVector::ElementType RFType;

    public:
      enum Strategy {
        /** \brief don't do any line search or damping */
        noLineSearch,
        /** \brief perform a linear search for the optimal damping parameter with multiples of damping

         the strategy was described in <a href="http://dx.doi.org/10.1007/BF01406516">[Hackbusch and Reusken, 1989]</a> */
        hackbuschReusken,
        /** \brief same as hackbuschReusken, but doesn't fail if the best update is still not good enough */
        hackbuschReuskenAcceptBest };

      NewtonLineSearch(const GridOperator& go, TrialVector& u_)
        : NewtonBase<GOS,TrlV,TstV>(go,u_)
        , strategy_(hackbuschReusken)
        , maxit_(10)
        , damping_factor_(0.5)
      {}

      NewtonLineSearch(const GridOperator& go)
        : NewtonBase<GOS,TrlV,TstV>(go)
        , strategy_(hackbuschReusken)
        , maxit_(10)
        , damping_factor_(0.5)
      {}

      void setLineSearchStrategy(Strategy strategy)
      {
        strategy_ = strategy;
      }

      void setLineSearchStrategy(std::string strategy)
      {
        strategy_ = strategyFromName(strategy);
      }

      void setLineSearchMaxIterations(unsigned int maxit)
      {
        maxit_ = maxit;
      }

      void setLineSearchDampingFactor(RFType damping_factor)
      {
        damping_factor_ = damping_factor;
      }

      virtual void line_search(TrialVector& z, TestVector& r)
      {
        if (strategy_ == noLineSearch)
          {
            this->u_->axpy(-1.0, z);                     // TODO: vector interface
            this->defect(r);
            return;
          }

        if (this->verbosity_level_ >= 4)
          std::cout << "      Performing line search..." << std::endl;
        RFType lambda = 1.0;
        RFType best_lambda = 0.0;
        RFType best_defect = this->res_.defect;
        TrialVector prev_u(*this->u_);  // TODO: vector interface
        unsigned int i = 0;
        ios_base_all_saver restorer(std::cout); // store old ios flags

        while (1)
          {
            if (this->verbosity_level_ >= 4)
              std::cout << "          trying line search damping factor:   "
                        << std::setw(12) << std::setprecision(4) << std::scientific
                        << lambda
                        << std::endl;

            this->u_->axpy(-lambda, z);                  // TODO: vector interface
            try {
              this->defect(r);
            }
             catch (NewtonDefectError)
              {
                if (this->verbosity_level_ >= 4)
                  std::cout << "          NaNs detected" << std::endl;
              }       // ignore NaNs and try again with lower lambda

            if (this->res_.defect <= (1.0 - lambda/4) * this->prev_defect_)
              {
                if (this->verbosity_level_ >= 4)
                  std::cout << "          line search converged" << std::endl;
                break;
              }

            if (this->res_.defect < best_defect)
              {
                best_defect = this->res_.defect;
                best_lambda = lambda;
              }

            if (++i >= maxit_)
              {
                if (this->verbosity_level_ >= 4)
                  std::cout << "          max line search iterations exceeded" << std::endl;
                switch (strategy_)
                  {
                  case hackbuschReusken:
                    *this->u_ = prev_u;
                    this->defect(r);
                    DUNE_THROW(NewtonLineSearchError,
                               "NewtonLineSearch::line_search(): line search failed, "
                               "max iteration count reached, "
                               "defect did not improve enough");
                  case hackbuschReuskenAcceptBest:
                    if (best_lambda == 0.0)
                      {
                        *this->u_ = prev_u;
                        this->defect(r);
                        DUNE_THROW(NewtonLineSearchError,
                                   "NewtonLineSearch::line_search(): line search failed, "
                                   "max iteration count reached, "
                                   "defect did not improve in any of the iterations");
                      }
                    if (best_lambda != lambda)
                      {
                        *this->u_ = prev_u;
                        this->u_->axpy(-best_lambda, z);
                        this->defect(r);
                      }
                    break;
                  case noLineSearch:
                    break;
                  }
                break;
              }

            lambda *= damping_factor_;
            *this->u_ = prev_u;                          // TODO: vector interface
          }
        if (this->verbosity_level_ >= 4)
          std::cout << "          line search damping factor:   "
                    << std::setw(12) << std::setprecision(4) << std::scientific
                    << lambda << std::endl;
      } // end line_search

    protected:
      /** helper function to get the different strategies from their name */
      Strategy strategyFromName(const std::string & s) {
        if (s == "noLineSearch")
          return noLineSearch;
        if (s == "hackbuschReusken")
          return hackbuschReusken;
        if (s == "hackbuschReuskenAcceptBest")
          return hackbuschReuskenAcceptBest;
        DUNE_THROW(Exception, "unknown line search strategy" << s);
      }

    private:
      Strategy strategy_;
      unsigned int maxit_;
      RFType damping_factor_;
    }; // end class NewtonLineSearch

    template<class GOS, class S, class TrlV, class TstV = TrlV>
    class Newton : public NewtonSolver<GOS,S,TrlV,TstV>
                 , public NewtonTerminate<GOS,TrlV,TstV>
                 , public NewtonLineSearch<GOS,TrlV,TstV>
                 , public NewtonPrepareStep<GOS,TrlV,TstV>
    {
      typedef GOS GridOperator;
      typedef S Solver;
      typedef TrlV TrialVector;

    public:
      Newton(const GridOperator& go, TrialVector& u_, Solver& solver_)
        : NewtonBase<GOS,TrlV,TstV>(go,u_)
        , NewtonSolver<GOS,S,TrlV,TstV>(go,u_,solver_)
        , NewtonTerminate<GOS,TrlV,TstV>(go,u_)
        , NewtonLineSearch<GOS,TrlV,TstV>(go,u_)
        , NewtonPrepareStep<GOS,TrlV,TstV>(go,u_)
      {}
      Newton(const GridOperator& go, Solver& solver_)
        : NewtonBase<GOS,TrlV,TstV>(go)
        , NewtonSolver<GOS,S,TrlV,TstV>(go,solver_)
        , NewtonTerminate<GOS,TrlV,TstV>(go)
        , NewtonLineSearch<GOS,TrlV,TstV>(go)
        , NewtonPrepareStep<GOS,TrlV,TstV>(go)
      {}
      //! interpret a parameter tree as a set of options for the newton solver
      /**

         example configuration:

         \code
         [NewtonParameters]

         ReassembleThreshold = 0.1
         LineSearchMaxIterations = 10
         MaxIterations = 7
         AbsoluteLimit = 1e-6
         Reduction = 1e-4
         MinLinearReduction = 1e-3
         LineSearchDamping  = 0.9
         \endcode

         and invocation in the code:
         \code
         newton.setParameters(param.sub("NewtonParameters"));
         \endcode
      */
      void setParameters(const Dune::ParameterTree & param)
      {
        typedef typename TstV::ElementType RFType;
        if (param.hasKey("VerbosityLevel"))
          this->setVerbosityLevel(
            param.get<unsigned int>("VerbosityLevel"));
        if (param.hasKey("Reduction"))
          this->setReduction(
            param.get<RFType>("Reduction"));
        if (param.hasKey("MaxIterations"))
          this->setMaxIterations(
            param.get<unsigned int>("MaxIterations"));
        if (param.hasKey("ForceIteration"))
          this->setForceIteration(
            param.get<bool>("ForceIteration"));
        if (param.hasKey("AbsoluteLimit"))
          this->setAbsoluteLimit(
            param.get<RFType>("AbsoluteLimit"));
        if (param.hasKey("MinLinearReduction"))
          this->setMinLinearReduction(
            param.get<RFType>("MinLinearReduction"));
        if (param.hasKey("FixedLinearReduction"))
          this->setFixedLinearReduction(
            param.get<bool>("FixedLinearReduction"));
        if (param.hasKey("ReassembleThreshold"))
          this->setReassembleThreshold(
            param.get<RFType>("ReassembleThreshold"));
        if (param.hasKey("LineSearchStrategy"))
          this->setLineSearchStrategy(
            param.get<std::string>("LineSearchStrategy"));
        if (param.hasKey("LineSearchMaxIterations"))
          this->setLineSearchMaxIterations(
            param.get<unsigned int>("LineSearchMaxIterations"));
        if (param.hasKey("LineSearchDampingFactor"))
          this->setLineSearchDampingFactor(
            param.get<RFType>("LineSearchDampingFactor"));
        if (param.hasKey("KeepMatrix"))
          this->setKeepMatrix(
            param.get<bool>("KeepMatrix"));
      }
    }; // end class Newton
  } // end namespace PDELab
} // end namespace Dune

#endif // DUNE_PDELAB_NEWTON_NEWTON_HH