This file is indexed.

/usr/include/dlib/svm/svr_trainer.h is in libdlib-dev 18.18-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
// Copyright (C) 2010  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_SVm_EPSILON_REGRESSION_TRAINER_Hh_ 
#define DLIB_SVm_EPSILON_REGRESSION_TRAINER_Hh_


#include "svr_trainer_abstract.h"
#include <cmath>
#include <limits>
#include "../matrix.h"
#include "../algs.h"

#include "function.h"
#include "kernel.h"
#include "../optimization/optimization_solve_qp3_using_smo.h"

namespace dlib 
{

// ----------------------------------------------------------------------------------------

    template <
        typename K 
        >
    class svr_trainer
    {
    public:
        typedef K kernel_type;
        typedef typename kernel_type::scalar_type scalar_type;
        typedef typename kernel_type::sample_type sample_type;
        typedef typename kernel_type::mem_manager_type mem_manager_type;
        typedef decision_function<kernel_type> trained_function_type;

        svr_trainer (
        ) :
            C(1),
            eps_insensitivity(0.1),
            cache_size(200),
            eps(0.001)
        {
        }

        void set_cache_size (
            long cache_size_
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(cache_size_ > 0,
                "\tvoid svr_trainer::set_cache_size(cache_size_)"
                << "\n\t invalid inputs were given to this function"
                << "\n\t cache_size: " << cache_size_ 
                );
            cache_size = cache_size_;
        }

        long get_cache_size (
        ) const
        {
            return cache_size;
        }

        void set_epsilon (
            scalar_type eps_
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(eps_ > 0,
                "\tvoid svr_trainer::set_epsilon(eps_)"
                << "\n\t invalid inputs were given to this function"
                << "\n\t eps_: " << eps_ 
                );
            eps = eps_;
        }

        const scalar_type get_epsilon (
        ) const
        { 
            return eps;
        }

        void set_epsilon_insensitivity (
            scalar_type eps_
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(eps_ > 0,
                "\tvoid svr_trainer::set_epsilon_insensitivity(eps_)"
                << "\n\t invalid inputs were given to this function"
                << "\n\t eps_: " << eps_ 
                );
            eps_insensitivity = eps_;
        }

        const scalar_type get_epsilon_insensitivity (
        ) const
        { 
            return eps_insensitivity;
        }

        void set_kernel (
            const kernel_type& k
        )
        {
            kernel_function = k;
        }

        const kernel_type& get_kernel (
        ) const
        {
            return kernel_function;
        }

        void set_c (
            scalar_type C_ 
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(C_ > 0,
                "\t void svr_trainer::set_c()"
                << "\n\t C must be greater than 0"
                << "\n\t C_:    " << C_ 
                << "\n\t this: " << this
                );

            C = C_;
        }

        const scalar_type get_c (
        ) const
        {
            return C;
        }

        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const decision_function<kernel_type> train (
            const in_sample_vector_type& x,
            const in_scalar_vector_type& y
        ) const
        {
            return do_train(mat(x), mat(y));
        }

        void swap (
            svr_trainer& item
        )
        {
            exchange(kernel_function, item.kernel_function);
            exchange(C,            item.C);
            exchange(eps_insensitivity, item.eps_insensitivity);
            exchange(cache_size,      item.cache_size);
            exchange(eps,             item.eps);
        }

    private:

    // ------------------------------------------------------------------------------------

        template <typename M>
        struct op_quad 
        {
            explicit op_quad( 
                const M& m_
            ) : m(m_) {}

            const M& m;

            typedef typename M::type type;
            typedef type const_ret_type;
            const static long cost = M::cost + 2;

            inline const_ret_type apply ( long r, long c) const
            { 
                if (r < m.nr())
                {
                    if (c < m.nc())
                    {
                        return m(r,c);
                    }
                    else
                    {
                        return -m(r,c-m.nc());
                    }
                }
                else
                {
                    if (c < m.nc())
                    {
                        return -m(r-m.nr(),c);
                    }
                    else
                    {
                        return m(r-m.nr(),c-m.nc());
                    }
                }
            }

            const static long NR = 2*M::NR;
            const static long NC = 2*M::NC;
            typedef typename M::mem_manager_type mem_manager_type;
            typedef typename M::layout_type layout_type;

            long nr () const { return 2*m.nr(); }
            long nc () const { return 2*m.nc(); }

            template <typename U> bool aliases               ( const matrix_exp<U>& item) const 
            { return m.aliases(item); }
            template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const 
            { return m.aliases(item); }
        };

        template <
            typename EXP
            >
        const matrix_op<op_quad<EXP> >  make_quad (
            const matrix_exp<EXP>& m
        ) const
        /*!
            ensures
                - returns the following matrix:
                     m -m
                    -m  m
                - I.e. returns a matrix that is twice the size of m and just
                  contains copies of m and -m
        !*/
        {
            typedef op_quad<EXP> op;
            return matrix_op<op>(op(m.ref()));
        }

    // ------------------------------------------------------------------------------------

        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const decision_function<kernel_type> do_train (
            const in_sample_vector_type& x,
            const in_scalar_vector_type& y
        ) const
        {
            typedef typename K::scalar_type scalar_type;
            typedef typename decision_function<K>::sample_vector_type sample_vector_type;
            typedef typename decision_function<K>::scalar_vector_type scalar_vector_type;

            // make sure requires clause is not broken
            DLIB_ASSERT(is_learning_problem(x,y) == true,
                "\tdecision_function svr_trainer::train(x,y)"
                << "\n\t invalid inputs were given to this function"
                << "\n\t x.nr(): " << x.nr() 
                << "\n\t y.nr(): " << y.nr() 
                << "\n\t x.nc(): " << x.nc() 
                << "\n\t y.nc(): " << y.nc() 
                );


            scalar_vector_type alpha;

            solve_qp3_using_smo<scalar_vector_type> solver;

            solver(symmetric_matrix_cache<float>(make_quad(kernel_matrix(kernel_function,x)), cache_size), 
                   uniform_matrix<scalar_type>(2*x.size(),1, eps_insensitivity) + join_cols(y,-y),
                   join_cols(uniform_matrix<scalar_type>(x.size(),1,1), uniform_matrix<scalar_type>(x.size(),1,-1)), 
                   0,
                   C,
                   C,
                   alpha,
                   eps);

            scalar_type b;
            calculate_b(alpha,solver.get_gradient(),C,b);

            alpha = -rowm(alpha,range(0,x.size()-1)) + rowm(alpha,range(x.size(), alpha.size()-1));
            
            // count the number of support vectors
            const long sv_count = (long)sum(alpha != 0);

            scalar_vector_type sv_alpha;
            sample_vector_type support_vectors;

            // size these column vectors so that they have an entry for each support vector
            sv_alpha.set_size(sv_count);
            support_vectors.set_size(sv_count);

            // load the support vectors and their alpha values into these new column matrices
            long idx = 0;
            for (long i = 0; i < alpha.nr(); ++i)
            {
                if (alpha(i) != 0)
                {
                    sv_alpha(idx) = alpha(i);
                    support_vectors(idx) = x(i);
                    ++idx;
                }
            }

            // now return the decision function
            return decision_function<K> (sv_alpha, -b, kernel_function, support_vectors);
        }

    // ------------------------------------------------------------------------------------

        template <
            typename scalar_vector_type
            >
        void calculate_b(
            const scalar_vector_type& alpha,
            const scalar_vector_type& df,
            const scalar_type& C,
            scalar_type& b
        ) const
        {
            using namespace std;
            long num_free = 0;
            scalar_type sum_free = 0;

            scalar_type upper_bound = -numeric_limits<scalar_type>::infinity();
            scalar_type lower_bound = numeric_limits<scalar_type>::infinity();

            find_min_and_max(df, upper_bound, lower_bound);

            for(long i = 0; i < alpha.nr(); ++i)
            {
                if(i < alpha.nr()/2)
                {
                    if(alpha(i) == C)
                    {
                        if (df(i) > upper_bound)
                            upper_bound = df(i);
                    }
                    else if(alpha(i) == 0)
                    {
                        if (df(i) < lower_bound)
                            lower_bound = df(i);
                    }
                    else
                    {
                        ++num_free;
                        sum_free += df(i);
                    }
                }
                else
                {
                    if(alpha(i) == C)
                    {
                        if (-df(i) < lower_bound)
                            lower_bound = -df(i);
                    }
                    else if(alpha(i) == 0)
                    {
                        if (-df(i) > upper_bound)
                            upper_bound = -df(i);
                    }
                    else
                    {
                        ++num_free;
                        sum_free -= df(i);
                    }
                }
            }

            if(num_free > 0)
                b = sum_free/num_free;
            else
                b = (upper_bound+lower_bound)/2;
        }

    // ------------------------------------------------------------------------------------


        kernel_type kernel_function;
        scalar_type C;
        scalar_type eps_insensitivity;
        long cache_size;
        scalar_type eps;
    }; // end of class svr_trainer

// ----------------------------------------------------------------------------------------

    template <typename K>
    void swap (
        svr_trainer<K>& a,
        svr_trainer<K>& b
    ) { a.swap(b); }

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_SVm_EPSILON_REGRESSION_TRAINER_Hh_