/usr/include/dlib/svm/svr_trainer.h is in libdlib-dev 18.18-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 | // Copyright (C) 2010 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_SVm_EPSILON_REGRESSION_TRAINER_Hh_
#define DLIB_SVm_EPSILON_REGRESSION_TRAINER_Hh_
#include "svr_trainer_abstract.h"
#include <cmath>
#include <limits>
#include "../matrix.h"
#include "../algs.h"
#include "function.h"
#include "kernel.h"
#include "../optimization/optimization_solve_qp3_using_smo.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
template <
typename K
>
class svr_trainer
{
public:
typedef K kernel_type;
typedef typename kernel_type::scalar_type scalar_type;
typedef typename kernel_type::sample_type sample_type;
typedef typename kernel_type::mem_manager_type mem_manager_type;
typedef decision_function<kernel_type> trained_function_type;
svr_trainer (
) :
C(1),
eps_insensitivity(0.1),
cache_size(200),
eps(0.001)
{
}
void set_cache_size (
long cache_size_
)
{
// make sure requires clause is not broken
DLIB_ASSERT(cache_size_ > 0,
"\tvoid svr_trainer::set_cache_size(cache_size_)"
<< "\n\t invalid inputs were given to this function"
<< "\n\t cache_size: " << cache_size_
);
cache_size = cache_size_;
}
long get_cache_size (
) const
{
return cache_size;
}
void set_epsilon (
scalar_type eps_
)
{
// make sure requires clause is not broken
DLIB_ASSERT(eps_ > 0,
"\tvoid svr_trainer::set_epsilon(eps_)"
<< "\n\t invalid inputs were given to this function"
<< "\n\t eps_: " << eps_
);
eps = eps_;
}
const scalar_type get_epsilon (
) const
{
return eps;
}
void set_epsilon_insensitivity (
scalar_type eps_
)
{
// make sure requires clause is not broken
DLIB_ASSERT(eps_ > 0,
"\tvoid svr_trainer::set_epsilon_insensitivity(eps_)"
<< "\n\t invalid inputs were given to this function"
<< "\n\t eps_: " << eps_
);
eps_insensitivity = eps_;
}
const scalar_type get_epsilon_insensitivity (
) const
{
return eps_insensitivity;
}
void set_kernel (
const kernel_type& k
)
{
kernel_function = k;
}
const kernel_type& get_kernel (
) const
{
return kernel_function;
}
void set_c (
scalar_type C_
)
{
// make sure requires clause is not broken
DLIB_ASSERT(C_ > 0,
"\t void svr_trainer::set_c()"
<< "\n\t C must be greater than 0"
<< "\n\t C_: " << C_
<< "\n\t this: " << this
);
C = C_;
}
const scalar_type get_c (
) const
{
return C;
}
template <
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const decision_function<kernel_type> train (
const in_sample_vector_type& x,
const in_scalar_vector_type& y
) const
{
return do_train(mat(x), mat(y));
}
void swap (
svr_trainer& item
)
{
exchange(kernel_function, item.kernel_function);
exchange(C, item.C);
exchange(eps_insensitivity, item.eps_insensitivity);
exchange(cache_size, item.cache_size);
exchange(eps, item.eps);
}
private:
// ------------------------------------------------------------------------------------
template <typename M>
struct op_quad
{
explicit op_quad(
const M& m_
) : m(m_) {}
const M& m;
typedef typename M::type type;
typedef type const_ret_type;
const static long cost = M::cost + 2;
inline const_ret_type apply ( long r, long c) const
{
if (r < m.nr())
{
if (c < m.nc())
{
return m(r,c);
}
else
{
return -m(r,c-m.nc());
}
}
else
{
if (c < m.nc())
{
return -m(r-m.nr(),c);
}
else
{
return m(r-m.nr(),c-m.nc());
}
}
}
const static long NR = 2*M::NR;
const static long NC = 2*M::NC;
typedef typename M::mem_manager_type mem_manager_type;
typedef typename M::layout_type layout_type;
long nr () const { return 2*m.nr(); }
long nc () const { return 2*m.nc(); }
template <typename U> bool aliases ( const matrix_exp<U>& item) const
{ return m.aliases(item); }
template <typename U> bool destructively_aliases ( const matrix_exp<U>& item) const
{ return m.aliases(item); }
};
template <
typename EXP
>
const matrix_op<op_quad<EXP> > make_quad (
const matrix_exp<EXP>& m
) const
/*!
ensures
- returns the following matrix:
m -m
-m m
- I.e. returns a matrix that is twice the size of m and just
contains copies of m and -m
!*/
{
typedef op_quad<EXP> op;
return matrix_op<op>(op(m.ref()));
}
// ------------------------------------------------------------------------------------
template <
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const decision_function<kernel_type> do_train (
const in_sample_vector_type& x,
const in_scalar_vector_type& y
) const
{
typedef typename K::scalar_type scalar_type;
typedef typename decision_function<K>::sample_vector_type sample_vector_type;
typedef typename decision_function<K>::scalar_vector_type scalar_vector_type;
// make sure requires clause is not broken
DLIB_ASSERT(is_learning_problem(x,y) == true,
"\tdecision_function svr_trainer::train(x,y)"
<< "\n\t invalid inputs were given to this function"
<< "\n\t x.nr(): " << x.nr()
<< "\n\t y.nr(): " << y.nr()
<< "\n\t x.nc(): " << x.nc()
<< "\n\t y.nc(): " << y.nc()
);
scalar_vector_type alpha;
solve_qp3_using_smo<scalar_vector_type> solver;
solver(symmetric_matrix_cache<float>(make_quad(kernel_matrix(kernel_function,x)), cache_size),
uniform_matrix<scalar_type>(2*x.size(),1, eps_insensitivity) + join_cols(y,-y),
join_cols(uniform_matrix<scalar_type>(x.size(),1,1), uniform_matrix<scalar_type>(x.size(),1,-1)),
0,
C,
C,
alpha,
eps);
scalar_type b;
calculate_b(alpha,solver.get_gradient(),C,b);
alpha = -rowm(alpha,range(0,x.size()-1)) + rowm(alpha,range(x.size(), alpha.size()-1));
// count the number of support vectors
const long sv_count = (long)sum(alpha != 0);
scalar_vector_type sv_alpha;
sample_vector_type support_vectors;
// size these column vectors so that they have an entry for each support vector
sv_alpha.set_size(sv_count);
support_vectors.set_size(sv_count);
// load the support vectors and their alpha values into these new column matrices
long idx = 0;
for (long i = 0; i < alpha.nr(); ++i)
{
if (alpha(i) != 0)
{
sv_alpha(idx) = alpha(i);
support_vectors(idx) = x(i);
++idx;
}
}
// now return the decision function
return decision_function<K> (sv_alpha, -b, kernel_function, support_vectors);
}
// ------------------------------------------------------------------------------------
template <
typename scalar_vector_type
>
void calculate_b(
const scalar_vector_type& alpha,
const scalar_vector_type& df,
const scalar_type& C,
scalar_type& b
) const
{
using namespace std;
long num_free = 0;
scalar_type sum_free = 0;
scalar_type upper_bound = -numeric_limits<scalar_type>::infinity();
scalar_type lower_bound = numeric_limits<scalar_type>::infinity();
find_min_and_max(df, upper_bound, lower_bound);
for(long i = 0; i < alpha.nr(); ++i)
{
if(i < alpha.nr()/2)
{
if(alpha(i) == C)
{
if (df(i) > upper_bound)
upper_bound = df(i);
}
else if(alpha(i) == 0)
{
if (df(i) < lower_bound)
lower_bound = df(i);
}
else
{
++num_free;
sum_free += df(i);
}
}
else
{
if(alpha(i) == C)
{
if (-df(i) < lower_bound)
lower_bound = -df(i);
}
else if(alpha(i) == 0)
{
if (-df(i) > upper_bound)
upper_bound = -df(i);
}
else
{
++num_free;
sum_free -= df(i);
}
}
}
if(num_free > 0)
b = sum_free/num_free;
else
b = (upper_bound+lower_bound)/2;
}
// ------------------------------------------------------------------------------------
kernel_type kernel_function;
scalar_type C;
scalar_type eps_insensitivity;
long cache_size;
scalar_type eps;
}; // end of class svr_trainer
// ----------------------------------------------------------------------------------------
template <typename K>
void swap (
svr_trainer<K>& a,
svr_trainer<K>& b
) { a.swap(b); }
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_SVm_EPSILON_REGRESSION_TRAINER_Hh_
|