This file is indexed.

/usr/include/dlib/svm/rr_trainer.h is in libdlib-dev 18.18-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
// Copyright (C) 2010  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_RR_TRAInER_Hh_
#define DLIB_RR_TRAInER_Hh_

#include "../algs.h"
#include "function.h"
#include "kernel.h"
#include "empirical_kernel_map.h"
#include "linearly_independent_subset_finder.h"
#include "../statistics.h"
#include "rr_trainer_abstract.h"
#include <vector>
#include <iostream>

namespace dlib
{
    template <
        typename K 
        >
    class rr_trainer
    {

    public:
        typedef K kernel_type;
        typedef typename kernel_type::scalar_type scalar_type;
        typedef typename kernel_type::sample_type sample_type;
        typedef typename kernel_type::mem_manager_type mem_manager_type;
        typedef decision_function<kernel_type> trained_function_type;

        // You are getting a compiler error on this line because you supplied a non-linear or 
        // sparse kernel to the rr_trainer object.  You have to use dlib::linear_kernel with this trainer.
        COMPILE_TIME_ASSERT((is_same_type<K, linear_kernel<sample_type> >::value));

        rr_trainer (
        ) :
            verbose(false),
            use_regression_loss(true),
            lambda(0)
        {
            // default lambda search list
            lams = matrix_cast<scalar_type>(logspace(-9, 2, 50)); 
        }

        void be_verbose (
        )
        {
            verbose = true;
        }

        void be_quiet (
        )
        {
            verbose = false;
        }

        void use_regression_loss_for_loo_cv (
        )
        {
            use_regression_loss = true;
        }

        void use_classification_loss_for_loo_cv (
        )
        {
            use_regression_loss = false;
        }

        bool will_use_regression_loss_for_loo_cv (
        ) const
        {
            return use_regression_loss;
        }

        const kernel_type get_kernel (
        ) const
        {
            return kernel_type();
        }

        void set_lambda (
            scalar_type lambda_ 
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(lambda_ >= 0,
                "\t void rr_trainer::set_lambda()"
                << "\n\t lambda must be greater than or equal to 0"
                << "\n\t lambda: " << lambda 
                << "\n\t this:   " << this
                );

            lambda = lambda_;
        }

        const scalar_type get_lambda (
        ) const
        {
            return lambda;
        }

        template <typename EXP>
        void set_search_lambdas (
            const matrix_exp<EXP>& lambdas
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(is_vector(lambdas) && lambdas.size() > 0 && min(lambdas) > 0,
                "\t void rr_trainer::set_search_lambdas()"
                << "\n\t lambdas must be a non-empty vector of values"
                << "\n\t is_vector(lambdas): " << is_vector(lambdas) 
                << "\n\t lambdas.size():     " << lambdas.size()
                << "\n\t min(lambdas):       " << min(lambdas) 
                << "\n\t this:   " << this
                );


            lams = matrix_cast<scalar_type>(lambdas);
        }

        const matrix<scalar_type,0,0,mem_manager_type>& get_search_lambdas (
        ) const
        {
            return lams;
        }

        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const decision_function<kernel_type> train (
            const in_sample_vector_type& x,
            const in_scalar_vector_type& y
        ) const
        {
            std::vector<scalar_type> temp; 
            scalar_type temp2;
            return do_train(mat(x), mat(y), false, temp, temp2);
        }

        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const decision_function<kernel_type> train (
            const in_sample_vector_type& x,
            const in_scalar_vector_type& y,
            std::vector<scalar_type>& loo_values
        ) const
        {
            scalar_type temp;
            return do_train(mat(x), mat(y), true, loo_values, temp);
        }

        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const decision_function<kernel_type> train (
            const in_sample_vector_type& x,
            const in_scalar_vector_type& y,
            std::vector<scalar_type>& loo_values,
            scalar_type& lambda_used 
        ) const
        {
            return do_train(mat(x), mat(y), true, loo_values, lambda_used);
        }


    private:

        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const decision_function<kernel_type> do_train (
            const in_sample_vector_type& x,
            const in_scalar_vector_type& y,
            const bool output_loo_values,
            std::vector<scalar_type>& loo_values,
            scalar_type& the_lambda
        ) const
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(is_learning_problem(x,y),
                "\t decision_function rr_trainer::train(x,y)"
                << "\n\t invalid inputs were given to this function"
                << "\n\t is_vector(x): " << is_vector(x)
                << "\n\t is_vector(y): " << is_vector(y)
                << "\n\t x.size():     " << x.size() 
                << "\n\t y.size():     " << y.size() 
                );

#ifdef ENABLE_ASSERTS
            if (get_lambda() == 0 && will_use_regression_loss_for_loo_cv() == false)
            {
                // make sure requires clause is not broken
                DLIB_ASSERT(is_binary_classification_problem(x,y),
                    "\t decision_function rr_trainer::train(x,y)"
                    << "\n\t invalid inputs were given to this function"
                    );
            }
#endif

            typedef matrix<scalar_type,0,1,mem_manager_type> column_matrix_type;
            typedef matrix<scalar_type,0,0,mem_manager_type> general_matrix_type;

            const long dims = x(0).size();

            /*
                Notes on the solution of ridge regression 

                Let A = an x.size() by dims matrix which contains all the data samples.

                Let I = an identity matrix

                Let C = trans(A)*A
                Let L = trans(A)*y

                Then the optimal w is given by:
                    w = inv(C + lambda*I) * L 


                There is a trick to compute leave one out cross validation results for many different
                lambda values quickly.  The following paper has a detailed discussion of various
                approaches:

                    Notes on Regularized Least Squares by Ryan M. Rifkin and Ross A. Lippert.

                    In the implementation of the rr_trainer I'm only using two simple equations
                    from the above paper.


                    First note that inv(C + lambda*I) can be computed for many different lambda
                    values in an efficient way by using an eigen decomposition of C.  So we use
                    the fact that:
                        inv(C + lambda*I) == V*inv(D + lambda*I)*trans(V)
                        where V*D*trans(V) == C 

                    Also, via some simple linear algebra the above paper works out that the leave one out 
                    value for a sample x(i) is equal to the following:
                        Let G = inv(C + lambda*I)
                        let val = trans(x(i))*G*x(i);

                        leave one out value for sample x(i):
                        LOOV = (trans(w)*x(i) - y(i)*val) / (1 - val)

                        leave one out error for sample x(i):
                        LOOE = loss(y(i), LOOV)


                Finally, note that we will pretend there was a 1 appended to the end of each
                vector in x.  We won't actually do that though because we don't want to
                have to make a copy of all the samples.  So throughout the following code 
                I have explicitly dealt with this.
            */

            general_matrix_type C, tempm, G;
            column_matrix_type  L, tempv, w;

            // compute C and L
            for (long i = 0; i < x.size(); ++i)
            {
                C += x(i)*trans(x(i));
                L += y(i)*x(i);
                tempv += x(i);
            }

            // Account for the extra 1 that we pretend is appended to x
            // Make C = [C      tempv
            //           tempv' x.size()]
            C = join_cols(join_rows(C, tempv), 
                          join_rows(trans(tempv), uniform_matrix<scalar_type>(1,1, x.size())));
            L = join_cols(L, uniform_matrix<scalar_type>(1,1, sum(y)));

            eigenvalue_decomposition<general_matrix_type> eig(make_symmetric(C));
            const general_matrix_type V = eig.get_pseudo_v();
            const column_matrix_type  D = eig.get_real_eigenvalues();

            // We can save some work by pre-multiplying the x vectors by trans(V)
            // and saving the result so we don't have to recompute it over and over later.
            matrix<column_matrix_type,0,1,mem_manager_type > Vx;
            if (lambda == 0 || output_loo_values)
            {
                // Save the transpose of V into a temporary because the subsequent matrix
                // vector multiplies will be faster (because of better cache locality).
                const general_matrix_type transV( colm(trans(V),range(0,dims-1))  );
                // Remember the pretend 1 at the end of x(*).  We want to multiply trans(V)*x(*)
                // so to do this we pull the last column off trans(V) and store it separately.
                const column_matrix_type lastV = colm(trans(V), dims);
                Vx.set_size(x.size());
                for (long i = 0; i < x.size(); ++i)
                {
                    Vx(i) = transV*x(i);
                    Vx(i) = squared(Vx(i) + lastV);
                }
            }

            the_lambda = lambda;

            // If we need to automatically select a lambda then do so using the LOOE trick described
            // above.
            bool did_loov = false;
            scalar_type best_looe = std::numeric_limits<scalar_type>::max();
            if (lambda == 0)
            {
                did_loov = true;

                // Compute leave one out errors for a bunch of different lambdas and pick the best one.
                for (long idx = 0; idx < lams.size(); ++idx)
                {
                    // first compute G
                    tempv = 1.0/(D + lams(idx));
                    tempm = scale_columns(V,tempv);
                    G = tempm*trans(V);

                    // compute the solution w for the current lambda
                    w = G*L;

                    // make w have the same length as the x vectors.
                    const scalar_type b = w(dims);
                    w = colm(w,0,dims);

                    scalar_type looe = 0;
                    for (long i = 0; i < x.size(); ++i)
                    {
                        // perform equivalent of: val = trans(x(i))*G*x(i);
                        const scalar_type val = dot(tempv, Vx(i));
                        const scalar_type temp = (1 - val);
                        scalar_type loov;
                        if (temp != 0)
                            loov = (trans(w)*x(i) + b - y(i)*val) / temp;
                        else
                            loov = 0;

                        looe += loss(loov, y(i));
                    }

                    // Keep track of the lambda which gave the lowest looe.  If two lambdas
                    // have the same looe then pick the biggest lambda.
                    if (looe < best_looe || (looe == best_looe && lams(idx) > the_lambda))
                    {
                        best_looe = looe;
                        the_lambda = lams(idx);
                    }
                }

                best_looe /= x.size();
            }



            // Now perform the main training.  That is, find w.
            // first, compute G = inv(C + the_lambda*I)
            tempv = 1.0/(D + the_lambda);
            tempm = scale_columns(V,tempv);
            G = tempm*trans(V);
            w = G*L;
           
            // make w have the same length as the x vectors.
            const scalar_type b = w(dims);
            w = colm(w,0,dims);


            // If we haven't done this already and we are supposed to then compute the LOO error rate for 
            // the current lambda and store the result in best_looe.
            if (output_loo_values)
            {
                loo_values.resize(x.size());
                did_loov = true;
                best_looe = 0;
                for (long i = 0; i < x.size(); ++i)
                {
                    // perform equivalent of: val = trans(x(i))*G*x(i);
                    const scalar_type val = dot(tempv, Vx(i));
                    const scalar_type temp = (1 - val);
                    scalar_type loov;
                    if (temp != 0)
                        loov = (trans(w)*x(i) + b - y(i)*val) / temp;
                    else
                        loov = 0;

                    best_looe += loss(loov, y(i));
                    loo_values[i] = loov;
                }

                best_looe /= x.size();

            }
            else
            {
                loo_values.clear();
            }

            if (verbose && did_loov)
            {
                using namespace std;
                cout << "Using lambda:             " << the_lambda << endl;
                if (use_regression_loss)
                    cout << "LOO Mean Squared Error:   " << best_looe << endl;
                else
                    cout << "LOO Classification Error: " << best_looe << endl;
            }

            // convert w into a proper decision function
            decision_function<kernel_type> df;
            df.alpha.set_size(1);
            df.alpha = 1;
            df.basis_vectors.set_size(1);
            df.basis_vectors(0) = w;
            df.b = -b; // don't forget about the bias we stuck onto all the vectors

            return df;
        }

        inline scalar_type loss (
            const scalar_type& a,
            const scalar_type& b
        ) const
        {
            if (use_regression_loss)
            {
                return (a-b)*(a-b);
            }
            else
            {
                // if a and b have the same sign then no loss
                if (a*b >= 0)
                    return 0;
                else
                    return 1;
            }
        }


        /*!
            CONVENTION
                - get_lambda() == lambda
                - get_kernel() == kernel_type() 
                - will_use_regression_loss_for_loo_cv() == use_regression_loss
                - get_search_lambdas() == lams
        !*/

        bool verbose;
        bool use_regression_loss;

        scalar_type lambda;

        matrix<scalar_type,0,0,mem_manager_type> lams; 
    }; 

}

#endif // DLIB_RR_TRAInER_Hh_