/usr/include/dlib/svm/reduced_abstract.h is in libdlib-dev 18.18-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 | // Copyright (C) 2008 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_REDUCED_TRAINERs_ABSTRACT_
#ifdef DLIB_REDUCED_TRAINERs_ABSTRACT_
#include "../matrix.h"
#include "../algs.h"
#include "function_abstract.h"
#include "kernel_abstract.h"
#include "../optimization.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
template <
typename trainer_type
>
class reduced_decision_function_trainer
{
/*!
REQUIREMENTS ON trainer_type
- trainer_type == some kind of batch trainer object (e.g. svm_nu_trainer)
WHAT THIS OBJECT REPRESENTS
This object represents an implementation of a reduced set algorithm.
This object acts as a post processor for anything that creates
decision_function objects. It wraps another trainer object and
performs this reduced set post processing with the goal of
representing the original decision function in a form that
involves fewer basis vectors.
!*/
public:
typedef typename trainer_type::kernel_type kernel_type;
typedef typename trainer_type::scalar_type scalar_type;
typedef typename trainer_type::sample_type sample_type;
typedef typename trainer_type::mem_manager_type mem_manager_type;
typedef typename trainer_type::trained_function_type trained_function_type;
reduced_decision_function_trainer (
);
/*!
ensures
- This object is in an uninitialized state. You must
construct a real one with the other constructor and assign it
to this instance before you use this object.
!*/
reduced_decision_function_trainer (
const trainer_type& trainer,
const unsigned long num_bv
);
/*!
requires
- num_bv > 0
ensures
- returns a trainer object that applies post processing to the decision_function
objects created by the given trainer object with the goal of creating
decision_function objects with fewer basis vectors.
- The reduced decision functions that are output will have at most
num_bv basis vectors.
!*/
template <
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const decision_function<kernel_type> train (
const in_sample_vector_type& x,
const in_scalar_vector_type& y
) const;
/*!
ensures
- trains a decision_function using the trainer that was supplied to
this object's constructor and then finds a reduced representation
for it and returns the reduced version.
throws
- std::bad_alloc
- any exceptions thrown by the trainer_type object
!*/
};
// ----------------------------------------------------------------------------------------
template <
typename trainer_type
>
const reduced_decision_function_trainer<trainer_type> reduced (
const trainer_type& trainer,
const unsigned long num_bv
) { return reduced_decision_function_trainer<trainer_type>(trainer, num_bv); }
/*!
requires
- num_bv > 0
- trainer_type == some kind of batch trainer object that creates decision_function
objects (e.g. svm_nu_trainer)
ensures
- returns a reduced_decision_function_trainer object that has been
instantiated with the given arguments.
!*/
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
template <
typename K,
typename stop_strategy_type,
typename T
>
distance_function<K> approximate_distance_function (
stop_strategy_type stop_strategy,
const distance_function<K>& target,
const T& starting_basis
);
/*!
requires
- stop_strategy == an object that defines a stop strategy such as one of
the objects from dlib/optimization/optimization_stop_strategies_abstract.h
- requirements on starting_basis
- T must be a dlib::matrix type or something convertible to a matrix via mat()
(e.g. a std::vector). Additionally, starting_basis must contain K::sample_type
objects which can be supplied to the kernel function used by target.
- is_vector(starting_basis) == true
- starting_basis.size() > 0
- target.get_basis_vectors().size() > 0
- kernel_derivative<K> is defined
(i.e. The analytic derivative for the given kernel must be defined)
- K::sample_type must be a dlib::matrix object and the basis_vectors inside target
and starting_basis must be column vectors.
ensures
- This routine attempts to find a distance_function object which is close
to the given target. That is, it searches for an X such that target(X) is
minimized. The optimization begins with an X in the span of the elements
of starting_basis and searches for an X which locally minimizes target(X).
Since this problem can have many local minima, the quality of the starting
basis can significantly influence the results.
- The optimization is over all variables in a distance_function, however,
the size of the basis set is constrained to no more than starting_basis.size().
That is, in the returned distance_function DF, we will have:
- DF.get_basis_vectors().size() <= starting_basis.size()
- The optimization is carried out until the stop_strategy indicates it
should stop.
!*/
// ----------------------------------------------------------------------------------------
template <
typename trainer_type
>
class reduced_decision_function_trainer2
{
/*!
REQUIREMENTS ON trainer_type
- trainer_type == some kind of batch trainer object (e.g. svm_nu_trainer)
- trainer_type::sample_type must be a dlib::matrix object
- kernel_derivative<trainer_type::kernel_type> must be defined
WHAT THIS OBJECT REPRESENTS
This object represents an implementation of a reduced set algorithm.
This object acts as a post processor for anything that creates
decision_function objects. It wraps another trainer object and
performs this reduced set post processing with the goal of
representing the original decision function in a form that
involves fewer basis vectors.
This object's implementation is the same as that in the above
reduced_decision_function_trainer object except it also performs
a global gradient based optimization at the end to further
improve the approximation to the original decision function
object.
!*/
public:
typedef typename trainer_type::kernel_type kernel_type;
typedef typename trainer_type::scalar_type scalar_type;
typedef typename trainer_type::sample_type sample_type;
typedef typename trainer_type::mem_manager_type mem_manager_type;
typedef typename trainer_type::trained_function_type trained_function_type;
reduced_decision_function_trainer2 (
);
/*!
ensures
- This object is in an uninitialized state. You must
construct a real one with the other constructor and assign it
to this instance before you use this object.
!*/
reduced_decision_function_trainer2 (
const trainer_type& trainer,
const unsigned long num_bv,
double eps = 1e-3
);
/*!
requires
- num_bv > 0
- eps > 0
ensures
- returns a trainer object that applies post processing to the decision_function
objects created by the given trainer object with the goal of creating
decision_function objects with fewer basis vectors.
- The reduced decision functions that are output will have at most
num_bv basis vectors.
- the gradient based optimization will continue until the change in the
objective function is less than eps. So smaller values of eps will
give better results but take longer to compute.
!*/
template <
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const decision_function<kernel_type> train (
const in_sample_vector_type& x,
const in_scalar_vector_type& y
) const;
/*!
requires
- x must be a list of objects which are each some kind of dlib::matrix
which represents column or row vectors.
ensures
- trains a decision_function using the trainer that was supplied to
this object's constructor and then finds a reduced representation
for it and returns the reduced version.
throws
- std::bad_alloc
- any exceptions thrown by the trainer_type object
!*/
};
// ----------------------------------------------------------------------------------------
template <
typename trainer_type
>
const reduced_decision_function_trainer2<trainer_type> reduced2 (
const trainer_type& trainer,
const unsigned long num_bv,
double eps = 1e-3
) { return reduced_decision_function_trainer2<trainer_type>(trainer, num_bv, eps); }
/*!
requires
- num_bv > 0
- trainer_type == some kind of batch trainer object that creates decision_function
objects (e.g. svm_nu_trainer)
- kernel_derivative<trainer_type::kernel_type> is defined
- eps > 0
ensures
- returns a reduced_decision_function_trainer2 object that has been
instantiated with the given arguments.
!*/
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_REDUCED_TRAINERs_ABSTRACT_
|