/usr/include/dlib/svm/reduced.h is in libdlib-dev 18.18-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 | // Copyright (C) 2008 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_REDUCEd_TRAINERS_
#define DLIB_REDUCEd_TRAINERS_
#include "reduced_abstract.h"
#include "../matrix.h"
#include "../algs.h"
#include "function.h"
#include "kernel.h"
#include "kcentroid.h"
#include "linearly_independent_subset_finder.h"
#include "../optimization.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
template <
typename trainer_type
>
class reduced_decision_function_trainer
{
public:
typedef typename trainer_type::kernel_type kernel_type;
typedef typename trainer_type::scalar_type scalar_type;
typedef typename trainer_type::sample_type sample_type;
typedef typename trainer_type::mem_manager_type mem_manager_type;
typedef typename trainer_type::trained_function_type trained_function_type;
reduced_decision_function_trainer (
) :num_bv(0) {}
reduced_decision_function_trainer (
const trainer_type& trainer_,
const unsigned long num_sb_
) :
trainer(trainer_),
num_bv(num_sb_)
{
// make sure requires clause is not broken
DLIB_ASSERT(num_bv > 0,
"\t reduced_decision_function_trainer()"
<< "\n\t you have given invalid arguments to this function"
<< "\n\t num_bv: " << num_bv
);
}
template <
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const decision_function<kernel_type> train (
const in_sample_vector_type& x,
const in_scalar_vector_type& y
) const
{
// make sure requires clause is not broken
DLIB_ASSERT(num_bv > 0,
"\t reduced_decision_function_trainer::train(x,y)"
<< "\n\t You have tried to use an uninitialized version of this object"
<< "\n\t num_bv: " << num_bv );
return do_train(mat(x), mat(y));
}
private:
// ------------------------------------------------------------------------------------
template <
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const decision_function<kernel_type> do_train (
const in_sample_vector_type& x,
const in_scalar_vector_type& y
) const
{
// get the decision function object we are going to try and approximate
const decision_function<kernel_type>& dec_funct = trainer.train(x,y);
// now find a linearly independent subset of the training points of num_bv points.
linearly_independent_subset_finder<kernel_type> lisf(dec_funct.kernel_function, num_bv);
fill_lisf(lisf, x);
// The next few statements just find the best weights with which to approximate
// the dec_funct object with the smaller set of vectors in the lisf dictionary. This
// is really just a simple application of some linear algebra. For the details
// see page 554 of Learning with kernels by Scholkopf and Smola where they talk
// about "Optimal Expansion Coefficients."
const kernel_type kern(dec_funct.kernel_function);
matrix<scalar_type,0,1,mem_manager_type> alpha;
alpha = lisf.get_inv_kernel_marix()*(kernel_matrix(kern,lisf,dec_funct.basis_vectors)*dec_funct.alpha);
decision_function<kernel_type> new_df(alpha,
0,
kern,
lisf.get_dictionary());
// now we have to figure out what the new bias should be. It might be a little
// different since we just messed with all the weights and vectors.
double bias = 0;
for (long i = 0; i < x.nr(); ++i)
{
bias += new_df(x(i)) - dec_funct(x(i));
}
new_df.b = bias/x.nr();
return new_df;
}
// ------------------------------------------------------------------------------------
trainer_type trainer;
unsigned long num_bv;
}; // end of class reduced_decision_function_trainer
template <typename trainer_type>
const reduced_decision_function_trainer<trainer_type> reduced (
const trainer_type& trainer,
const unsigned long num_bv
)
{
// make sure requires clause is not broken
DLIB_ASSERT(num_bv > 0,
"\tconst reduced_decision_function_trainer reduced()"
<< "\n\t you have given invalid arguments to this function"
<< "\n\t num_bv: " << num_bv
);
return reduced_decision_function_trainer<trainer_type>(trainer, num_bv);
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
namespace red_impl
{
// ------------------------------------------------------------------------------------
template <typename kernel_type>
class objective
{
/*
This object represents the objective function we will try to
minimize in approximate_distance_function().
The objective is the distance, in kernel induced feature space, between
the original distance function and the approximated version.
*/
typedef typename kernel_type::scalar_type scalar_type;
typedef typename kernel_type::sample_type sample_type;
typedef typename kernel_type::mem_manager_type mem_manager_type;
public:
objective(
const distance_function<kernel_type>& dist_funct_,
matrix<scalar_type,0,1,mem_manager_type>& b_,
matrix<sample_type,0,1,mem_manager_type>& out_vectors_
) :
dist_funct(dist_funct_),
b(b_),
out_vectors(out_vectors_)
{
}
const matrix<scalar_type, 0, 1, mem_manager_type> state_to_vector (
) const
/*!
ensures
- returns a vector that contains all the information necessary to
reproduce the current state of the approximated distance function
!*/
{
matrix<scalar_type, 0, 1, mem_manager_type> z(b.nr() + out_vectors.size()*out_vectors(0).nr());
long i = 0;
for (long j = 0; j < b.nr(); ++j)
{
z(i) = b(j);
++i;
}
for (long j = 0; j < out_vectors.size(); ++j)
{
for (long k = 0; k < out_vectors(j).size(); ++k)
{
z(i) = out_vectors(j)(k);
++i;
}
}
return z;
}
void vector_to_state (
const matrix<scalar_type, 0, 1, mem_manager_type>& z
) const
/*!
requires
- z came from the state_to_vector() function or has a compatible format
ensures
- loads the vector z into the state variables of the approximate
distance function (i.e. b and out_vectors)
!*/
{
long i = 0;
for (long j = 0; j < b.nr(); ++j)
{
b(j) = z(i);
++i;
}
for (long j = 0; j < out_vectors.size(); ++j)
{
for (long k = 0; k < out_vectors(j).size(); ++k)
{
out_vectors(j)(k) = z(i);
++i;
}
}
}
double operator() (
const matrix<scalar_type, 0, 1, mem_manager_type>& z
) const
/*!
ensures
- loads the current approximate distance function with z
- returns the distance between the original distance function
and the approximate one.
!*/
{
vector_to_state(z);
const kernel_type k(dist_funct.get_kernel());
double temp = 0;
for (long i = 0; i < out_vectors.size(); ++i)
{
for (long j = 0; j < dist_funct.get_basis_vectors().nr(); ++j)
{
temp -= b(i)*dist_funct.get_alpha()(j)*k(out_vectors(i), dist_funct.get_basis_vectors()(j));
}
}
temp *= 2;
for (long i = 0; i < out_vectors.size(); ++i)
{
for (long j = 0; j < out_vectors.size(); ++j)
{
temp += b(i)*b(j)*k(out_vectors(i), out_vectors(j));
}
}
return temp + dist_funct.get_squared_norm();
}
private:
const distance_function<kernel_type>& dist_funct;
matrix<scalar_type,0,1,mem_manager_type>& b;
matrix<sample_type,0,1,mem_manager_type>& out_vectors;
};
// ------------------------------------------------------------------------------------
template <typename kernel_type>
class objective_derivative
{
/*!
This object represents the derivative of the objective object
!*/
typedef typename kernel_type::scalar_type scalar_type;
typedef typename kernel_type::sample_type sample_type;
typedef typename kernel_type::mem_manager_type mem_manager_type;
public:
objective_derivative(
const distance_function<kernel_type>& dist_funct_,
matrix<scalar_type,0,1,mem_manager_type>& b_,
matrix<sample_type,0,1,mem_manager_type>& out_vectors_
) :
dist_funct(dist_funct_),
b(b_),
out_vectors(out_vectors_)
{
}
void vector_to_state (
const matrix<scalar_type, 0, 1, mem_manager_type>& z
) const
/*!
requires
- z came from the state_to_vector() function or has a compatible format
ensures
- loads the vector z into the state variables of the approximate
distance function (i.e. b and out_vectors)
!*/
{
long i = 0;
for (long j = 0; j < b.nr(); ++j)
{
b(j) = z(i);
++i;
}
for (long j = 0; j < out_vectors.size(); ++j)
{
for (long k = 0; k < out_vectors(j).size(); ++k)
{
out_vectors(j)(k) = z(i);
++i;
}
}
}
const matrix<scalar_type,0,1,mem_manager_type>& operator() (
const matrix<scalar_type, 0, 1, mem_manager_type>& z
) const
/*!
ensures
- loads the current approximate distance function with z
- returns the derivative of the distance between the original
distance function and the approximate one.
!*/
{
vector_to_state(z);
res.set_size(z.nr());
set_all_elements(res,0);
const kernel_type k(dist_funct.get_kernel());
const kernel_derivative<kernel_type> K_der(k);
// first compute the gradient for the beta weights
for (long i = 0; i < out_vectors.size(); ++i)
{
for (long j = 0; j < out_vectors.size(); ++j)
{
res(i) += b(j)*k(out_vectors(i), out_vectors(j));
}
}
for (long i = 0; i < out_vectors.size(); ++i)
{
for (long j = 0; j < dist_funct.get_basis_vectors().size(); ++j)
{
res(i) -= dist_funct.get_alpha()(j)*k(out_vectors(i), dist_funct.get_basis_vectors()(j));
}
}
// now compute the gradient of the actual vectors that go into the kernel functions
long pos = out_vectors.size();
const long num = out_vectors(0).nr();
temp.set_size(num,1);
for (long i = 0; i < out_vectors.size(); ++i)
{
set_all_elements(temp,0);
for (long j = 0; j < out_vectors.size(); ++j)
{
temp += b(j)*K_der(out_vectors(j), out_vectors(i));
}
for (long j = 0; j < dist_funct.get_basis_vectors().nr(); ++j)
{
temp -= dist_funct.get_alpha()(j)*K_der(dist_funct.get_basis_vectors()(j), out_vectors(i) );
}
// store the gradient for out_vectors(i) into result in the proper spot
set_subm(res,pos,0,num,1) = b(i)*temp;
pos += num;
}
res *= 2;
return res;
}
private:
mutable matrix<scalar_type, 0, 1, mem_manager_type> res;
mutable sample_type temp;
const distance_function<kernel_type>& dist_funct;
matrix<scalar_type,0,1,mem_manager_type>& b;
matrix<sample_type,0,1,mem_manager_type>& out_vectors;
};
// ------------------------------------------------------------------------------------
}
template <
typename K,
typename stop_strategy_type,
typename T
>
distance_function<K> approximate_distance_function (
stop_strategy_type stop_strategy,
const distance_function<K>& target,
const T& starting_basis
)
{
// make sure requires clause is not broken
DLIB_ASSERT(target.get_basis_vectors().size() > 0 &&
starting_basis.size() > 0,
"\t distance_function approximate_distance_function()"
<< "\n\t Invalid inputs were given to this function."
<< "\n\t target.get_basis_vectors().size(): " << target.get_basis_vectors().size()
<< "\n\t starting_basis.size(): " << starting_basis.size()
);
using namespace red_impl;
// The next few statements just find the best weights with which to approximate
// the target object with the set of basis vectors in starting_basis. This
// is really just a simple application of some linear algebra. For the details
// see page 554 of Learning with kernels by Scholkopf and Smola where they talk
// about "Optimal Expansion Coefficients."
const K kern(target.get_kernel());
typedef typename K::scalar_type scalar_type;
typedef typename K::sample_type sample_type;
typedef typename K::mem_manager_type mem_manager_type;
matrix<scalar_type,0,1,mem_manager_type> beta;
// Now we compute the fist approximate distance function.
beta = pinv(kernel_matrix(kern,starting_basis)) *
(kernel_matrix(kern,starting_basis,target.get_basis_vectors())*target.get_alpha());
matrix<sample_type,0,1,mem_manager_type> out_vectors(mat(starting_basis));
// Now setup to do a global optimization of all the parameters in the approximate
// distance function.
const objective<K> obj(target, beta, out_vectors);
const objective_derivative<K> obj_der(target, beta, out_vectors);
matrix<scalar_type,0,1,mem_manager_type> opt_starting_point(obj.state_to_vector());
// perform a full optimization of all the parameters (i.e. both beta and the basis vectors together)
find_min(lbfgs_search_strategy(20),
stop_strategy,
obj, obj_der, opt_starting_point, 0);
// now make sure that the final optimized value is loaded into the beta and
// out_vectors matrices
obj.vector_to_state(opt_starting_point);
// Do a final reoptimization of beta just to make sure it is optimal given the new
// set of basis vectors.
beta = pinv(kernel_matrix(kern,out_vectors))*(kernel_matrix(kern,out_vectors,target.get_basis_vectors())*target.get_alpha());
// It is possible that some of the beta weights will be very close to zero. Lets remove
// the basis vectors with these essentially zero weights.
const scalar_type eps = max(abs(beta))*std::numeric_limits<scalar_type>::epsilon();
for (long i = 0; i < beta.size(); ++i)
{
// if beta(i) is zero (but leave at least one beta no matter what)
if (std::abs(beta(i)) < eps && beta.size() > 1)
{
beta = remove_row(beta, i);
out_vectors = remove_row(out_vectors, i);
--i;
}
}
return distance_function<K>(beta, kern, out_vectors);
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
template <
typename trainer_type
>
class reduced_decision_function_trainer2
{
public:
typedef typename trainer_type::kernel_type kernel_type;
typedef typename trainer_type::scalar_type scalar_type;
typedef typename trainer_type::sample_type sample_type;
typedef typename trainer_type::mem_manager_type mem_manager_type;
typedef typename trainer_type::trained_function_type trained_function_type;
reduced_decision_function_trainer2 () : num_bv(0) {}
reduced_decision_function_trainer2 (
const trainer_type& trainer_,
const long num_sb_,
const double eps_ = 1e-3
) :
trainer(trainer_),
num_bv(num_sb_),
eps(eps_)
{
COMPILE_TIME_ASSERT(is_matrix<sample_type>::value);
// make sure requires clause is not broken
DLIB_ASSERT(num_bv > 0 && eps > 0,
"\t reduced_decision_function_trainer2()"
<< "\n\t you have given invalid arguments to this function"
<< "\n\t num_bv: " << num_bv
<< "\n\t eps: " << eps
);
}
template <
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const decision_function<kernel_type> train (
const in_sample_vector_type& x,
const in_scalar_vector_type& y
) const
{
// make sure requires clause is not broken
DLIB_ASSERT(num_bv > 0,
"\t reduced_decision_function_trainer2::train(x,y)"
<< "\n\t You have tried to use an uninitialized version of this object"
<< "\n\t num_bv: " << num_bv );
return do_train(mat(x), mat(y));
}
private:
template <
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const decision_function<kernel_type> do_train (
const in_sample_vector_type& x,
const in_scalar_vector_type& y
) const
{
// get the decision function object we are going to try and approximate
const decision_function<kernel_type>& dec_funct = trainer.train(x,y);
const kernel_type kern(dec_funct.kernel_function);
// now find a linearly independent subset of the training points of num_bv points.
linearly_independent_subset_finder<kernel_type> lisf(kern, num_bv);
fill_lisf(lisf,x);
distance_function<kernel_type> approx, target;
target = dec_funct;
approx = approximate_distance_function(objective_delta_stop_strategy(eps), target, lisf);
decision_function<kernel_type> new_df(approx.get_alpha(),
0,
kern,
approx.get_basis_vectors());
// now we have to figure out what the new bias should be. It might be a little
// different since we just messed with all the weights and vectors.
double bias = 0;
for (long i = 0; i < x.nr(); ++i)
{
bias += new_df(x(i)) - dec_funct(x(i));
}
new_df.b = bias/x.nr();
return new_df;
}
// ------------------------------------------------------------------------------------
trainer_type trainer;
long num_bv;
double eps;
}; // end of class reduced_decision_function_trainer2
template <typename trainer_type>
const reduced_decision_function_trainer2<trainer_type> reduced2 (
const trainer_type& trainer,
const long num_bv,
double eps = 1e-3
)
{
COMPILE_TIME_ASSERT(is_matrix<typename trainer_type::sample_type>::value);
// make sure requires clause is not broken
DLIB_ASSERT(num_bv > 0 && eps > 0,
"\tconst reduced_decision_function_trainer2 reduced2()"
<< "\n\t you have given invalid arguments to this function"
<< "\n\t num_bv: " << num_bv
<< "\n\t eps: " << eps
);
return reduced_decision_function_trainer2<trainer_type>(trainer, num_bv, eps);
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_REDUCEd_TRAINERS_
|