/usr/include/dlib/svm/pegasos_abstract.h is in libdlib-dev 18.18-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 | // Copyright (C) 2009 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_PEGASoS_ABSTRACT_
#ifdef DLIB_PEGASoS_ABSTRACT_
#include <cmath>
#include "../algs.h"
#include "function_abstract.h"
#include "kernel_abstract.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
template <
typename kern_type
>
class svm_pegasos
{
/*!
REQUIREMENTS ON kern_type
is a kernel function object as defined in dlib/svm/kernel_abstract.h
WHAT THIS OBJECT REPRESENTS
This object implements an online algorithm for training a support
vector machine for solving binary classification problems.
The implementation of the Pegasos algorithm used by this object is based
on the following excellent paper:
Pegasos: Primal estimated sub-gradient solver for SVM (2007)
by Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro
In ICML
This SVM training algorithm has two interesting properties. First, the
pegasos algorithm itself converges to the solution in an amount of time
unrelated to the size of the training set (in addition to being quite fast
to begin with). This makes it an appropriate algorithm for learning from
very large datasets. Second, this object uses the dlib::kcentroid object
to maintain a sparse approximation of the learned decision function.
This means that the number of support vectors in the resulting decision
function is also unrelated to the size of the dataset (in normal SVM
training algorithms, the number of support vectors grows approximately
linearly with the size of the training set).
!*/
public:
typedef kern_type kernel_type;
typedef typename kernel_type::scalar_type scalar_type;
typedef typename kernel_type::sample_type sample_type;
typedef typename kernel_type::mem_manager_type mem_manager_type;
typedef decision_function<kernel_type> trained_function_type;
template <typename K_>
struct rebind {
typedef svm_pegasos<K_> other;
};
svm_pegasos (
);
/*!
ensures
- this object is properly initialized
- #get_lambda_class1() == 0.0001
- #get_lambda_class2() == 0.0001
- #get_tolerance() == 0.01
- #get_train_count() == 0
- #get_max_num_sv() == 40
!*/
svm_pegasos (
const kernel_type& kernel_,
const scalar_type& lambda_,
const scalar_type& tolerance_,
unsigned long max_num_sv
);
/*!
requires
- lambda_ > 0
- tolerance_ > 0
- max_num_sv > 0
ensures
- this object is properly initialized
- #get_lambda_class1() == lambda_
- #get_lambda_class2() == lambda_
- #get_tolerance() == tolerance_
- #get_kernel() == kernel_
- #get_train_count() == 0
- #get_max_num_sv() == max_num_sv
!*/
void clear (
);
/*!
ensures
- #get_train_count() == 0
- clears out any memory of previous calls to train()
- doesn't change any of the algorithm parameters. I.e.
- #get_lambda_class1() == get_lambda_class1()
- #get_lambda_class2() == get_lambda_class2()
- #get_tolerance() == get_tolerance()
- #get_kernel() == get_kernel()
- #get_max_num_sv() == get_max_num_sv()
!*/
const scalar_type get_lambda_class1 (
) const;
/*!
ensures
- returns the SVM regularization term for the +1 class. It is the
parameter that determines the trade off between trying to fit the
+1 training data exactly or allowing more errors but hopefully
improving the generalization ability of the resulting classifier.
Smaller values encourage exact fitting while larger values may
encourage better generalization. It is also worth noting that the
number of iterations it takes for this algorithm to converge is
proportional to 1/lambda. So smaller values of this term cause
the running time of this algorithm to increase. For more
information you should consult the paper referenced above.
!*/
const scalar_type get_lambda_class2 (
) const;
/*!
ensures
- returns the SVM regularization term for the -1 class. It has
the same properties as the get_lambda_class1() parameter except that
it applies to the -1 class.
!*/
const scalar_type get_tolerance (
) const;
/*!
ensures
- returns the tolerance used by the internal kcentroid object to
represent the learned decision function. Smaller values of this
tolerance will result in a more accurate representation of the
decision function but will use more support vectors (up to
a max of get_max_num_sv()).
!*/
unsigned long get_max_num_sv (
) const;
/*!
ensures
- returns the maximum number of support vectors this object is
allowed to use.
!*/
const kernel_type get_kernel (
) const;
/*!
ensures
- returns the kernel used by this object
!*/
void set_kernel (
kernel_type k
);
/*!
ensures
- #get_kernel() == k
- #get_train_count() == 0
(i.e. clears any memory of previous training)
!*/
void set_tolerance (
double tol
);
/*!
requires
- tol > 0
ensures
- #get_tolerance() == tol
- #get_train_count() == 0
(i.e. clears any memory of previous training)
!*/
void set_max_num_sv (
unsigned long max_num_sv
);
/*!
requires
- max_num_sv > 0
ensures
- #get_max_num_sv() == max_num_sv
- #get_train_count() == 0
(i.e. clears any memory of previous training)
!*/
void set_lambda (
scalar_type lambda_
);
/*!
requires
- lambda_ > 0
ensures
- #get_lambda_class1() == lambda_
- #get_lambda_class2() == lambda_
- #get_train_count() == 0
(i.e. clears any memory of previous training)
!*/
void set_lambda_class1 (
scalar_type lambda_
);
/*!
requires
- lambda_ > 0
ensures
- #get_lambda_class1() == lambda_
#get_train_count() == 0
(i.e. clears any memory of previous training)
!*/
void set_lambda_class2 (
scalar_type lambda_
);
/*!
requires
- lambda_ > 0
ensures
- #get_lambda_class2() == lambda_
#get_train_count() == 0
(i.e. clears any memory of previous training)
!*/
unsigned long get_train_count (
) const;
/*!
ensures
- returns how many times this->train() has been called
since this object was constructed or last cleared.
!*/
scalar_type train (
const sample_type& x,
const scalar_type& y
);
/*!
requires
- y == 1 || y == -1
ensures
- trains this svm using the given sample x and label y
- #get_train_count() == get_train_count() + 1
- returns the current learning rate
(i.e. 1/(get_train_count()*min(get_lambda_class1(),get_lambda_class2())) )
!*/
scalar_type operator() (
const sample_type& x
) const;
/*!
ensures
- classifies the given x sample using the decision function
this object has learned so far.
- if (x is a sample predicted have +1 label) then
- returns a number >= 0
- else
- returns a number < 0
!*/
const decision_function<kernel_type> get_decision_function (
) const;
/*!
ensures
- returns a decision function F that represents the function learned
by this object so far. I.e. it is the case that:
- for all x: F(x) == (*this)(x)
!*/
void swap (
svm_pegasos& item
);
/*!
ensures
- swaps *this and item
!*/
};
// ----------------------------------------------------------------------------------------
template <
typename kern_type
>
void swap(
svm_pegasos<kern_type>& a,
svm_pegasos<kern_type>& b
) { a.swap(b); }
/*!
provides a global swap function
!*/
template <
typename kern_type
>
void serialize (
const svm_pegasos<kern_type>& item,
std::ostream& out
);
/*!
provides serialization support for svm_pegasos objects
!*/
template <
typename kern_type
>
void deserialize (
svm_pegasos<kern_type>& item,
std::istream& in
);
/*!
provides serialization support for svm_pegasos objects
!*/
// ----------------------------------------------------------------------------------------
template <
typename T,
typename U
>
void replicate_settings (
const svm_pegasos<T>& source,
svm_pegasos<U>& dest
);
/*!
ensures
- copies all the parameters from the source trainer to the dest trainer.
- #dest.get_tolerance() == source.get_tolerance()
- #dest.get_lambda_class1() == source.get_lambda_class1()
- #dest.get_lambda_class2() == source.get_lambda_class2()
- #dest.get_max_num_sv() == source.get_max_num_sv()
!*/
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
template <
typename trainer_type
>
class batch_trainer
{
/*!
REQUIREMENTS ON trainer_type
- trainer_type == some kind of online trainer object (e.g. svm_pegasos)
replicate_settings() must also be defined for the type.
WHAT THIS OBJECT REPRESENTS
This is a trainer object that is meant to wrap online trainer objects
that create decision_functions. It turns an online learning algorithm
such as svm_pegasos into a batch learning object. This allows you to
use objects like svm_pegasos with functions (e.g. cross_validate_trainer)
that expect batch mode training objects.
!*/
public:
typedef typename trainer_type::kernel_type kernel_type;
typedef typename trainer_type::scalar_type scalar_type;
typedef typename trainer_type::sample_type sample_type;
typedef typename trainer_type::mem_manager_type mem_manager_type;
typedef typename trainer_type::trained_function_type trained_function_type;
batch_trainer (
);
/*!
ensures
- This object is in an uninitialized state. You must
construct a real one with the other constructor and assign it
to this instance before you use this object.
!*/
batch_trainer (
const trainer_type& online_trainer,
const scalar_type min_learning_rate_,
bool verbose_,
bool use_cache_,
long cache_size_ = 100
);
/*!
requires
- min_learning_rate_ > 0
- cache_size_ > 0
ensures
- returns a batch trainer object that uses the given online_trainer object
to train a decision function.
- #get_min_learning_rate() == min_learning_rate_
- if (verbose_ == true) then
- this object will output status messages to standard out while
training is under way.
- if (use_cache_ == true) then
- this object will cache up to cache_size_ columns of the kernel
matrix during the training process.
!*/
const scalar_type get_min_learning_rate (
) const;
/*!
ensures
- returns the min learning rate that the online trainer must reach
before this object considers training to be complete.
!*/
template <
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const decision_function<kernel_type> train (
const in_sample_vector_type& x,
const in_scalar_vector_type& y
) const;
/*!
ensures
- trains and returns a decision_function using the trainer that was
supplied to this object's constructor.
- training continues until the online training object indicates that
its learning rate has dropped below get_min_learning_rate().
throws
- std::bad_alloc
- any exceptions thrown by the trainer_type object
!*/
};
// ----------------------------------------------------------------------------------------
template <
typename trainer_type
>
const batch_trainer<trainer_type> batch (
const trainer_type& trainer,
const typename trainer_type::scalar_type min_learning_rate = 0.1
) { return batch_trainer<trainer_type>(trainer, min_learning_rate, false, false); }
/*!
requires
- min_learning_rate > 0
- trainer_type == some kind of online trainer object that creates decision_function
objects (e.g. svm_pegasos). replicate_settings() must also be defined for the type.
ensures
- returns a batch_trainer object that has been instantiated with the
given arguments.
!*/
// ----------------------------------------------------------------------------------------
template <
typename trainer_type
>
const batch_trainer<trainer_type> verbose_batch (
const trainer_type& trainer,
const typename trainer_type::scalar_type min_learning_rate = 0.1
) { return batch_trainer<trainer_type>(trainer, min_learning_rate, true, false); }
/*!
requires
- min_learning_rate > 0
- trainer_type == some kind of online trainer object that creates decision_function
objects (e.g. svm_pegasos). replicate_settings() must also be defined for the type.
ensures
- returns a batch_trainer object that has been instantiated with the
given arguments (and is verbose).
!*/
// ----------------------------------------------------------------------------------------
template <
typename trainer_type
>
const batch_trainer<trainer_type> batch_cached (
const trainer_type& trainer,
const typename trainer_type::scalar_type min_learning_rate = 0.1,
long cache_size = 100
) { return batch_trainer<trainer_type>(trainer, min_learning_rate, false, true, cache_size); }
/*!
requires
- min_learning_rate > 0
- cache_size > 0
- trainer_type == some kind of online trainer object that creates decision_function
objects (e.g. svm_pegasos). replicate_settings() must also be defined for the type.
ensures
- returns a batch_trainer object that has been instantiated with the
given arguments (uses a kernel cache).
!*/
// ----------------------------------------------------------------------------------------
template <
typename trainer_type
>
const batch_trainer<trainer_type> verbose_batch_cached (
const trainer_type& trainer,
const typename trainer_type::scalar_type min_learning_rate = 0.1,
long cache_size = 100
) { return batch_trainer<trainer_type>(trainer, min_learning_rate, true, true, cache_size); }
/*!
requires
- min_learning_rate > 0
- cache_size > 0
- trainer_type == some kind of online trainer object that creates decision_function
objects (e.g. svm_pegasos). replicate_settings() must also be defined for the type.
ensures
- returns a batch_trainer object that has been instantiated with the
given arguments (is verbose and uses a kernel cache).
!*/
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_PEGASoS_ABSTRACT_
|